

Generative Recommendation with Foundation Models

Yongfeng Zhang, Rutgers University

yongfeng.zhang@rutgers.edu

http://www.yongfeng.me

Recommender Systems are Everywhere

• Influence our daily life by providing personalized services

E-commerce

Social Networks

News Feeding

Search Engine

Navigation

Travel Planning

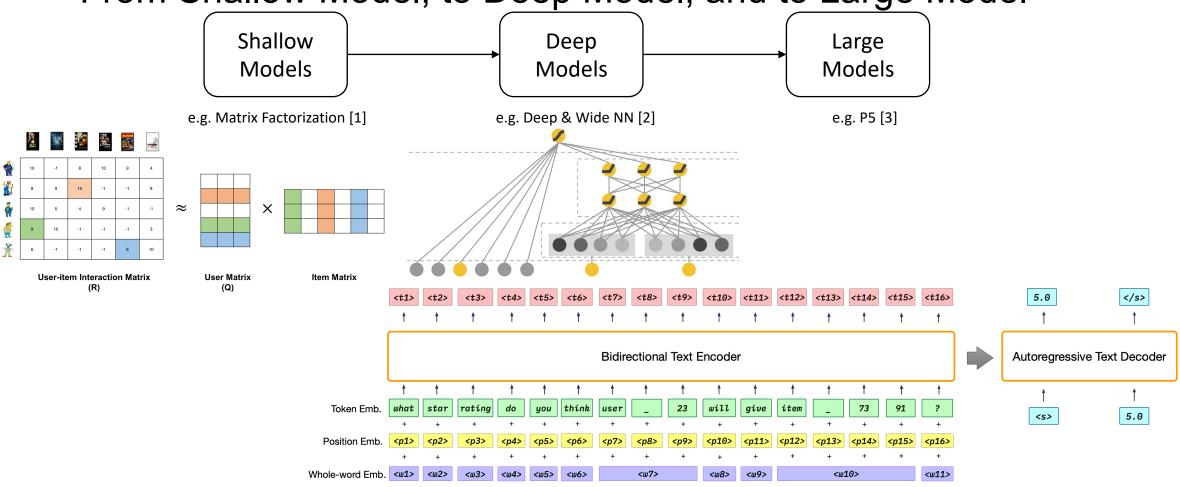
Professional Networks

Healthcare

Online Education

Technical Advancement of Recommender Systems

From Shallow Model, to Deep Model, and to Large Model

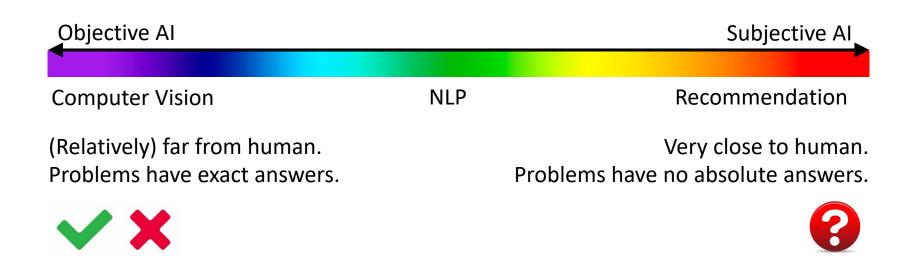


^[1] Koren, Yehuda, Robert Bell, and Chris Volinsky. "Matrix factorization techniques for recommender systems." Computer 42, no. 8 (2009): 30-37.

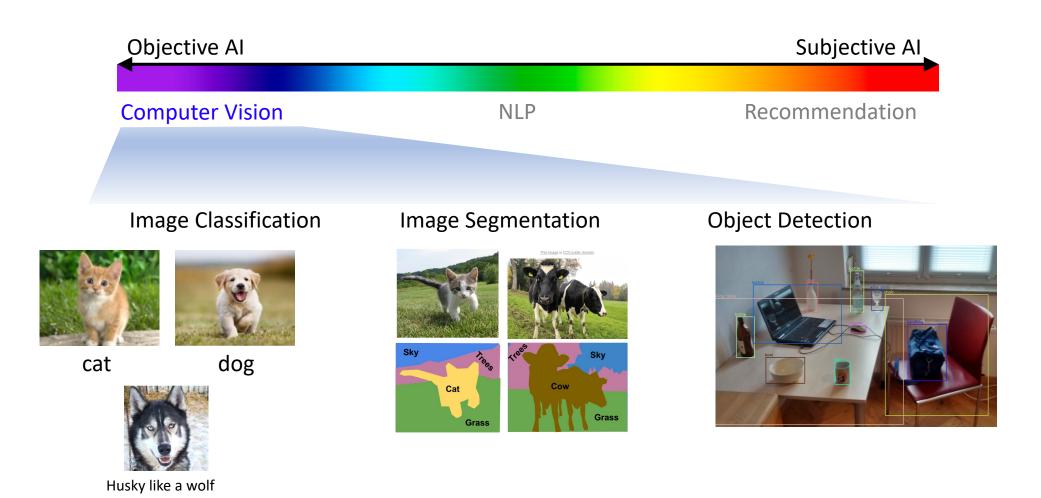
^[2] Cheng, Heng-Tze, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson et al. "Wide & deep learning for recommender systems." DLRS 2016.

Objective AI vs. Subjective AI

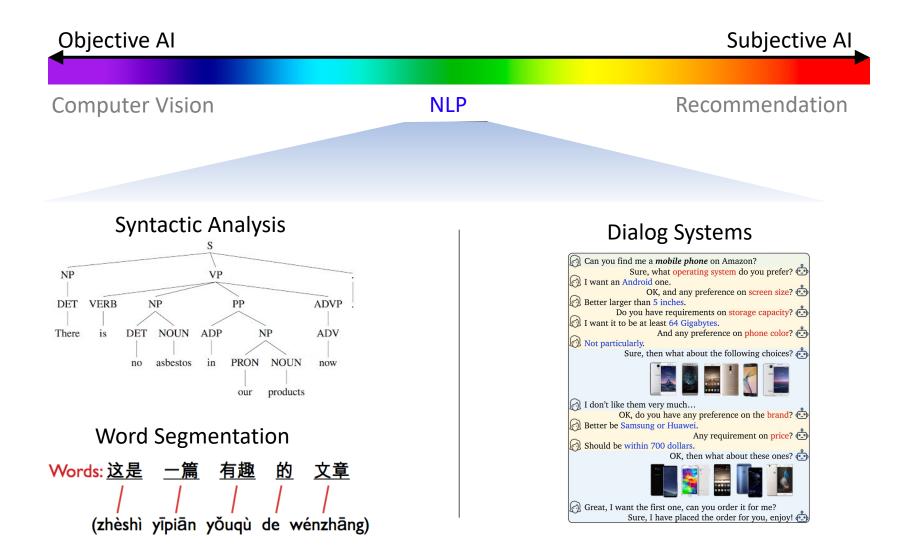
- Recommendation is unique in the AI family
 - Recommendation is most close to human among all AI tasks
 - Recommendation is a very representative Subjective Al
 - Thus, leads to many unique challenges in recommendation research



Computer Vision: (mostly) Objective AI Tasks



NLP: partly Objective, partly Subjective



Recommendation: mostly Subjective Al Tasks

Recommendation is not only about Item Ranking

- A diverse set of recommendation tasks
 - Rating Prediction
 - Item Ranking
 - Sequential Recommendation
 - User Profile Construction
 - Review Summarization
 - Explanation Generation
 - •

Subjective AI needs Explainability

Objective vs. Subjective AI on Explainability

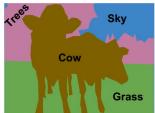
Objective AI

Human can directly identify if the

AI-produced result is right or wrong

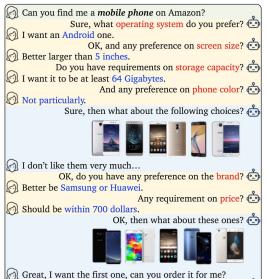
cat

dog



Subjective Al

Human can hardly identify if the AI-produced result is right or wrong. Users are very vulnerable, could be manipulated, utilized or even cheated by the system



Sure, I have placed the order for you, enjoy!

Nothing is definitely right or wrong.

Highly subjective, and usually personalized.

Subjective AI needs Explainability

- In many cases, it doesn't matter what you recommend, but how you explain your recommendation
- How do humans make recommendation?

RUTGERS

Can we Handle all RecSys tasks Together?

- A diverse set of recommendation tasks
 - Rating Prediction
 - Item Ranking
 - Sequential Recommendation
 - User Profile Construction
 - Review Summarization
 - Explanation Generation
 - Fairness Consideration
 - ...
- Do we really need to design thousands of recommendation models?
 - Difficult to integrate so many models in industry production environment

A Bird's View of Existing RecSys

• The Multi-Stage Filtering RecSys Pipeline

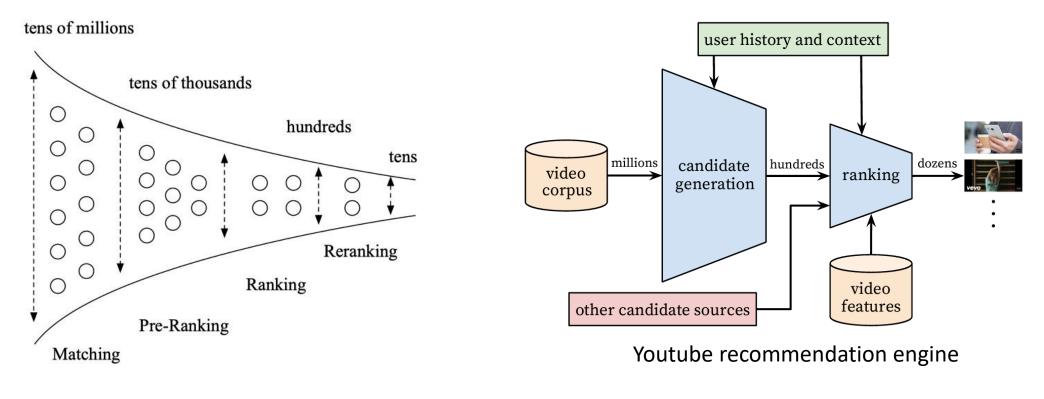
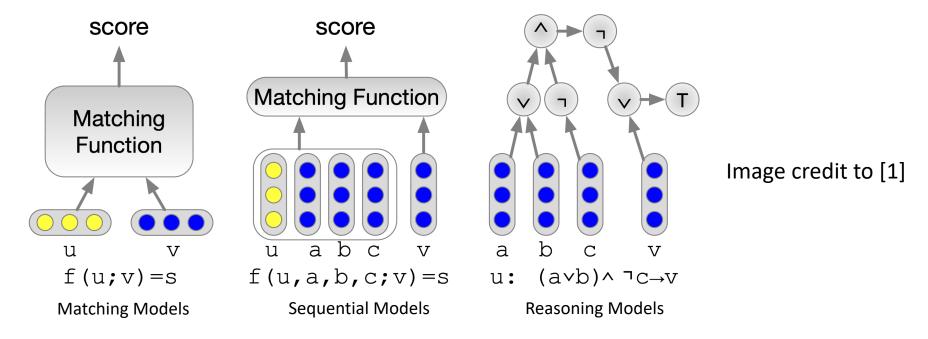


Image credit to [1] Image credit to [2]

Discriminative Ranking

User-item matching based on embeddings

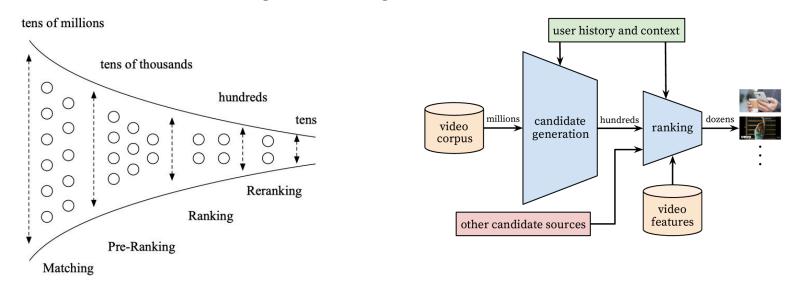


- Discriminative ranking loss function
 - e.g., Bayesian Personalized Ranking (BPR) loss

$$maximize \sum_{(u,i,j)\in D_S} \ln \sigma(\hat{x}_{uij}) - \lambda_{\Theta} ||\Theta||^2 \qquad where: \hat{x}_{uij} = p_u q_i^T - p_u q_j^T$$

Problem with Discriminative Ranking

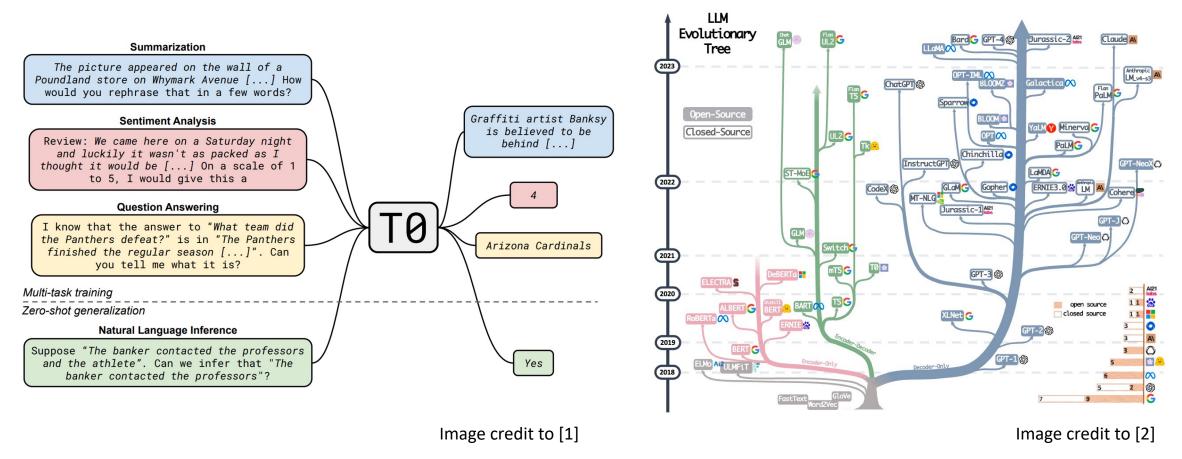
- Huge numbers of users and items
 - Amazon: 300 million customers, 350 million products*
 - YouTube: 2.6+ billion monthly active users, 5+ billion videos**
 - We have to use multi-stage filtering



- Too many candidate items, difficult for evaluation
 - Many research papers use sampled evaluation: 1-in-100, 1-in-1000, etc.

Foundation Models

Auto-regressive decoding for generative prediction

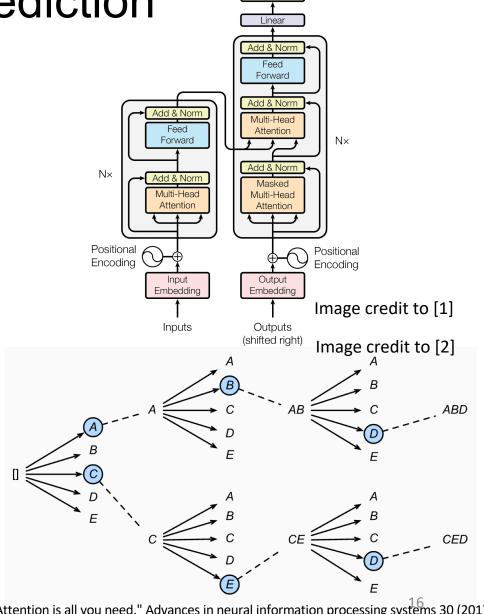


Generative Pre-training and Prediction

- Generative Pre-training
 - Generative Loss Function
 - Use the previous tokens to predict next token

$$L_1(\mathcal{U}) = \sum_i \log P(u_i|u_{i-k}, \dots, u_{i-1}; \Theta)$$

- Generative Prediction
 - Beam Search
 - # of candidate tokens at each beam is fixed
 - No longer need one-by-one candidate score calculation as in discriminative ranking
 - Directly generate the item ID to recommend

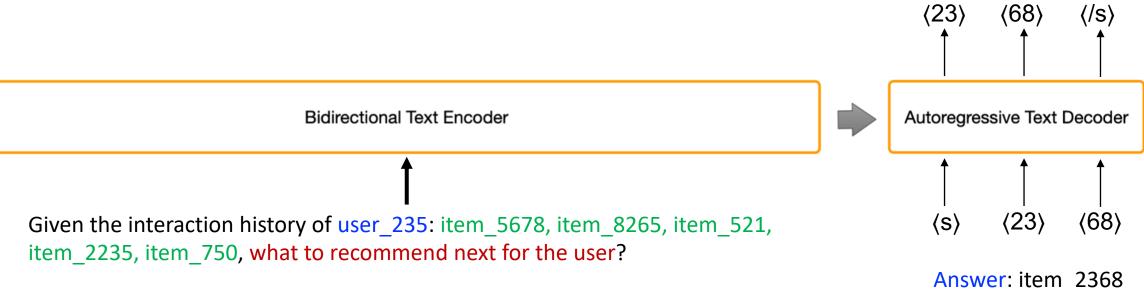


Output Probabilities

Softmax

Generative Ranking

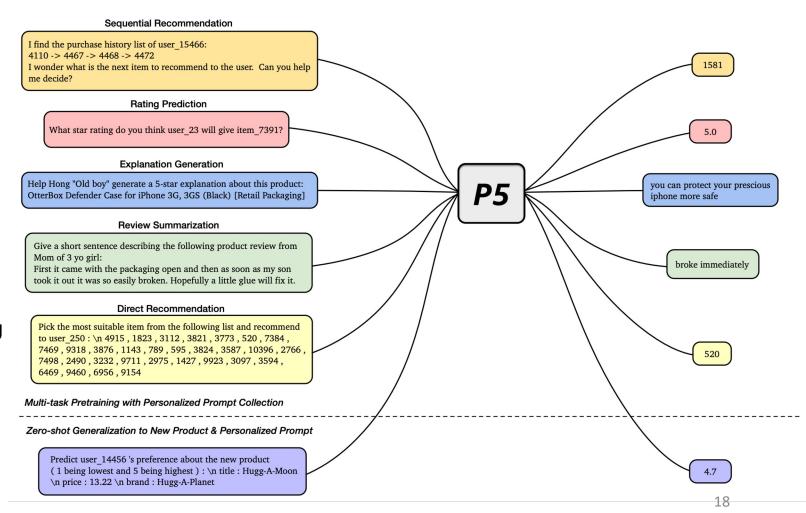
- From Multi-stage ranking to Single-stage ranking
 - The model automatically considers all items as the candidate pool
 - Fixed-size item decoding
 - e.g., using 100 tokens (00)(01)...(99) for item ID representation



The P5 Generative Recommendation Paradigm

P5: Pretrain, Personalized Prompt & Predict Paradigm [1]

- Learns multiple recommendation tasks together through a unified sequence-tosequence framework
- Formulates different recommendation problems as prompt-based natural language tasks
- User-item information and corresponding features are integrated with personalized prompts as model inputs

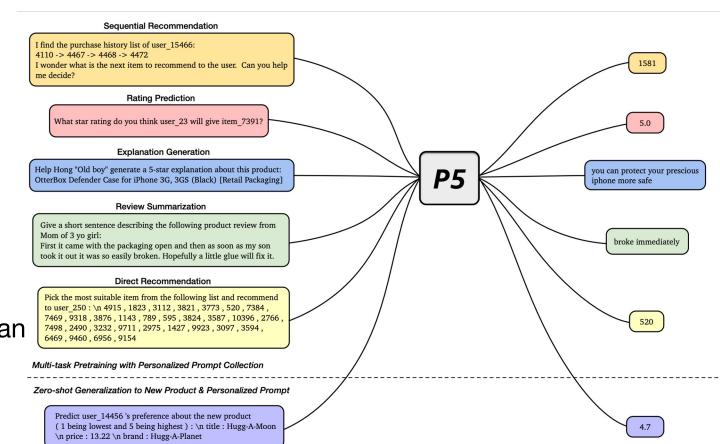


Five Key Questions in P5 Design

- 1. What tasks are covered by P5?
- 2. How to represent user preferences and item features in P5?
- 3. How to design personalized prompts for different recommendation tasks?
- 4. What foundation model architecture as backbone for P5?
- 5. How to conduct training and inference of P5?

P5 Recommendation Tasks

- P5 covers 5 different task families
 - o rating prediction
 - sequential recommendation
 - explanation generation
 - review summarization
 - o direct recommendation
- But is not limited these five task families, can be easily and flexibility extended with new personalized prompts



Enable Personalization in Prompts

- Definition of <u>personalized</u> prompts
 - A prompt that includes personalized fields for different users and items
- User's preference can be indicated through
 - A user ID (e.g., "user_23")
 - Content description of the user such as location, preferred movie genres, etc.
- Item field can be represented by
 - An item ID (e.g., "item_7391")
 - Item content metadata that contains detailed descriptions of the item, e.g., item category

Personalized Prompt Design

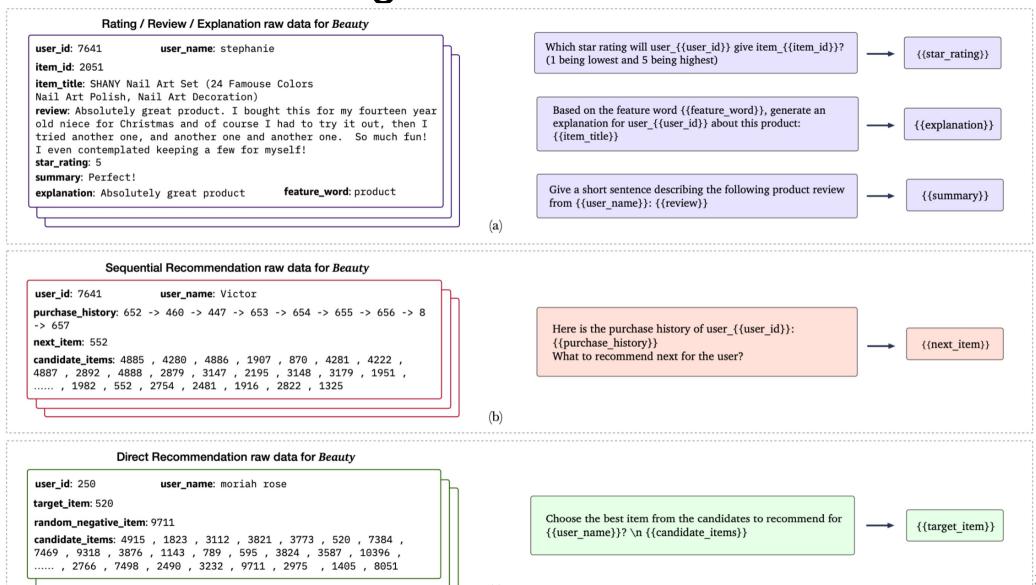
Rating / Review / Explanation raw data for Beauty Which star rating will user {{user id}} give item {{item id}}? user_id: 7641 user_name: stephanie {{star rating}} (1 being lowest and 5 being highest) item_id: 2051 item title: SHANY Nail Art Set (24 Famouse Colors Nail Art Polish, Nail Art Decoration) review: Absolutely great product. I bought this for my fourteen year Based on the feature word {{feature word}}, generate an old niece for Christmas and of course I had to try it out, then I explanation for user {{user id}} about this product: {{explanation}} tried another one, and another one and another one. So much fun! {{item title}} I even contemplated keeping a few for myself! star_rating: 5 summary: Perfect! Give a short sentence describing the following product review feature_word: product explanation: Absolutely great product {{summary}} from {{user name}}: {{review}} Sequential Recommendation raw data for Beauty user_id: 7641 user_name: Victor purchase_history: 652 -> 460 -> 447 -> 653 -> 654 -> 655 -> 656 -> 8 -> 657 Here is the purchase history of user {{user id}}: next item: 552 {{purchase history}} {{next_item}} What to recommend next for the user? candidate_items: 4885 , 4280 , 4886 , 1907 , 870 , 4281 , 4222 , 4887 , 2892 , 4888 , 2879 , 3147 , 2195 , 3148 , 3179 , 1951 , , 1982 , 552 , 2754 , 2481 , 1916 , 2822 , 1325

Design Multiple Prompts for Each Task

• To enhance variation in language style (e.g., sequential recommendation)

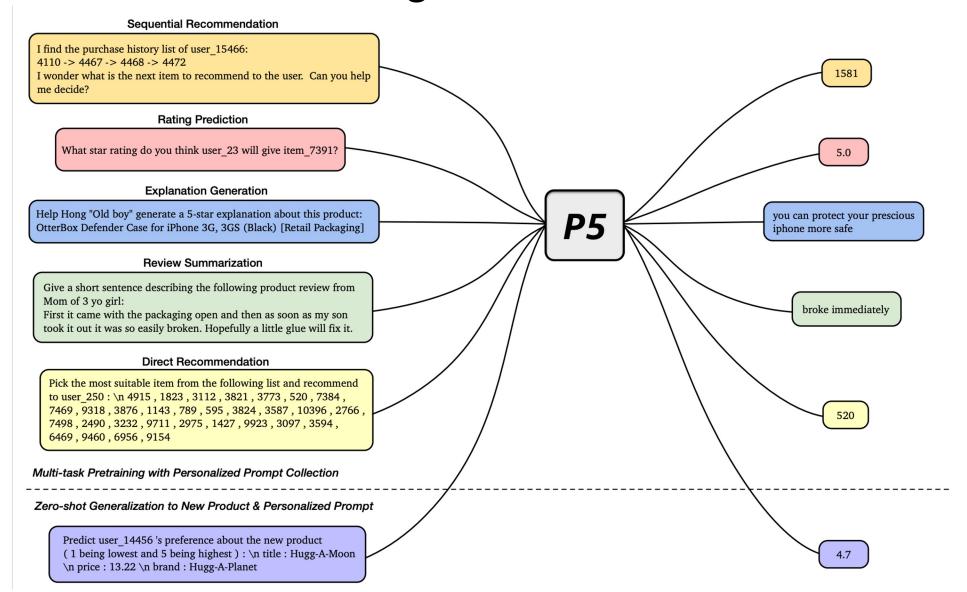
```
Prompt ID: 2-1
                                                                          Prompt ID: 2-4
                                                                          Input template: Given the following purchase history of
Input template: Given the following purchase history of
                                                                         {{user_desc}}:
user_{{user_id}}:
                                                                          {{purchase_history}}
{{purchase_history}}
                                                                          predict next possible item for the user
predict next possible item to be purchased by the user?
                                                                          Target template: {{next_item}}
Target template: {{next_item}}
                                                                         Prompt ID: 2-5
Prompt ID: 2-2
                                                                          Input template: Based on the purchase history of {{user_desc}}:
Input template: I find the purchase history list of user_{{user_id}}:
                                                                          {{purchase_history}}
{{purchase_history}}
                                                                          Can you decide the next item likely to be purchased by the user?
I wonder which is the next item to recommend to the user. Can you
help me decide?
                                                                          Target template: {{next_item}}
                                                                         Prompt ID: 2-6
Target template: {{next_item}}
                                                                          Input template: Here is the purchase history of {{user_desc}}:
Prompt ID: 2-3
                                                                          {{purchase_history}}
                                                                          What to recommend next for the user?
Input template: Here is the purchase history list of
user_{{user_id}}:
                                                                         Target template: {{next_item}}
{{purchase_history}}
try to recommend next item to the user
Target template: {{next_item}}
```


Text-to-Text Training Data

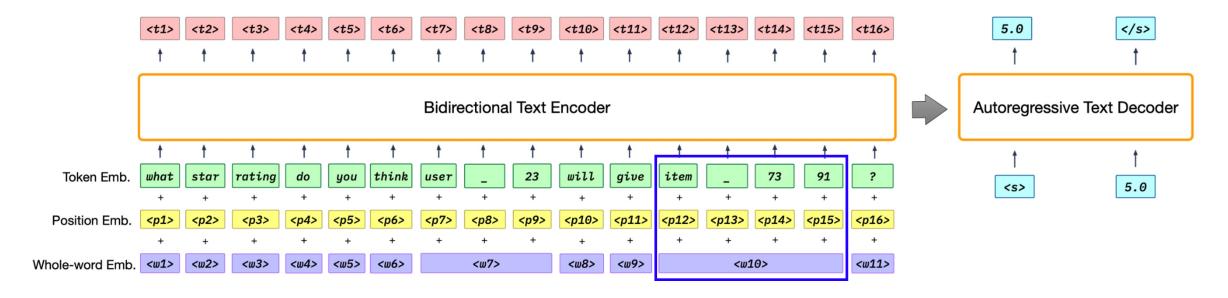


24

Multi-Task Pre-training



Multi-Task Pre-training



- P5 is pre-trained on top of T5 checkpoints (to enable P5 basic ability for language understanding)
 - So P5 is a sequence-to-sequence model
- By default, we use multiple sub-word units to represent personalize fields (e.g., ["item", "_", "73", "91"])
- To help the model to understand ["item", "_", "73", "91"] is a complete field, we apply whole-word embedding in P5

Generative Recommendation

- The encoder takes input sequence
- The decoder autoregressively generates next words:

• Autoregressive LM loss is shared by all tasks:
$$\mathcal{L}_{\theta}^{P5} = -\sum_{j=1}^{|\mathbf{y}|} \log P_{\theta} \left(\mathbf{y}_j \mid \mathbf{y}_{< j}, \mathbf{x} \right)$$

- We can unify various recommendation tasks with one model, one loss, and one data format
- Inference with pretrained P5
 - Simply apply beam search to generate a list of potential next items
 - Since item IDs are tokenized (e.g., ["item", "_", "73", "91"]), beam search is limited on width
 E.g., 100 tokens width: (00), (01), (02), ..., (98), (99)

Advantages of P5 Generative Recommendation

- Immerses recommendation models into a full language environment
 - With the flexibility and expressiveness of language, there is no need to design feature-specific encoders
- P5 treats all personalized tasks as a conditional text generation problem
 - One data format, one model, one loss for multiple recommendation tasks
 - No need to design data-specific or task-specific recommendation models
- P5 attains sufficient zero-shot performance when generalizing to novel personalized prompts or unseen items in other domains

Performance of P5 under seen Prompts

Rating Prediction:

Methods	Spo	orts	Bea	uty	Toys			
Memous	RMSE	MAE	RMSE	MAE	RMSE	MAE		
MF	1.0234	0.7935	1.1973	0.9461	1.0123	0.7984		
MLP	1.1277	0.7626	1.3078	0.9597	1.1215	0.8097		
P5-S (1-6)	1.0594	0.6639	1.3128	0.8428	1.0746	0.7054		
P5-B (1-6)	1.0357	0.6813	1.2843	0.8534	1.0544	0.7177		
P5-S (1-10)	1.0522	0.6698	1.2989	0.8473	1.0550	0.7173		
P5-B (1-10)	1.0292	0.6864	1.2870	0.8531	1.0245	0.6931		

Sequential Recommendation:

Mathada		Sp	orts			Be	auty		Toys					
Methods	HR@5	NDCG@5	HR@10	NDCG@10	HR@5	NDCG@5	HR@10	NDCG@10	HR@5	NDCG@5	HR@10	NDCG@10		
Caser	0.0116	0.0072	0.0194	0.0097	0.0205	0.0131	0.0347	0.0176	0.0166	0.0107	0.0270	0.0141		
HGN	0.0189	0.0120	0.0313	0.0159	0.0325	0.0206	0.0512	0.0266	0.0321	0.0221	0.0497	0.0277		
GRU4Rec	0.0129	0.0086	0.0204	0.0110	0.0164	0.0099	0.0283	0.0137	0.0097	0.0059	0.0176	0.0084		
BERT4Rec	0.0115	0.0075	0.0191	0.0099	0.0203	0.0124	0.0347	0.0170	0.0116	0.0071	0.0203	0.0099		
FDSA	0.0182	0.0122	0.0288	0.0156	0.0267	0.0163	0.0407	0.0208	0.0228	0.0140	0.0381	0.0189		
SASRec	0.0233	0.0154	0.0350	0.0192	0.0387	0.0249	0.0605	0.0318	0.0463	0.0306	0.0675	0.0374		
S^3 -Rec	0.0251	0.0161	0.0385	0.0204	0.0387	0.0244	0.0647	0.0327	0.0443	0.0294	0.0700	0.0376		
P5-S (2-3)	0.0272	0.0169	0.0361	0.0198	0.0503	0.0370	0.0659	0.0421	0.0648	0.0567	0.0709	0.0587		
P5-B (2-3)	0.0364	0.0296	0.0431	0.0318	0.0508	0.0379	0.0664	0.0429	0.0608	0.0507	0.0688	0.0534		
P5-S (2-13)	0.0258	0.0159	0.0346	0.0188	0.0490	0.0358	0.0646	0.0409	0.0647	0.0566	0.0705	0.0585		
P5-B (2-13)	0.0387	0.0312	0.0460	0.0336	0.0493	0.0367	0.0645	0.0416	0.0587	0.0486	0.0675	0.0536		

Explanation Generation:

M-41 1-		Sp	orts			Ве	auty		Toys					
Methods	BLUE4	ROUGE1	ROUGE2	ROUGEL	BLUE4	ROUGE1	ROUGE2	ROUGEL	BLUE4	ROUGE1	ROUGE2	ROUGEL		
Attn2Seq	0.5305	12.2800	1.2107	9.1312	0.7889	12.6590	1.6820	9.7481	1.6238	13.2245	2.9942	10.7398		
NRT	0.4793	11.0723	1.1304	7.6674	0.8295	12.7815	1.8543	9.9477	1.9084	13.5231	3.6708	11.1867		
PETER	0.7112	12.8944	1.3283	9.8635	1.1541	14.8497	2.1413	11.4143	1.9861	14.2716	3.6718	11.7010		
P5-S (3-3)	1.0447	14.9048	2.1297	11.1778	1.2237	17.6938	2.2489	12.8606	2.2892	15.4505	3.6974	12.1718		
P5-B (3-3)	1.0407	14.1589	2.1220	10.6096	0.9742	16.4530	1.8858	11.8765	2.3185	<u>15.3474</u>	3.7209	12.1312		
PETER+	2.4627	24.1181	5.1937	18.4105	3.2606	25.5541	5.9668	19.7168	4.7919	28.3083	9.4520	22.7017		
P5-S (3-9)	1.4101	23.5619	5.4196	<u>17.6245</u>	1.9788	25.6253	6.3678	19.9497	4.1222	28.4088	9.5432	22.6064		
P5-B (3-9)	1.4689	23.5476	5.3926	17.5852	1.8765	25.1183	6.0764	19.4488	3.8933	27.9916	<u>9.5896</u>	22.2178		
P5-S (3-12)	1.3212	23.2474	5.3461	17.3780	1.9425	25.1474	6.0551	19.5601	4.2764	28.1897	9.1327	22.2514		
P5-B (3-12)	1.4303	23.3810	5.3239	17.4913	1.9031	25.1763	<u>6.1980</u>	19.5188	3.5861	28.1369	9.7562	22.3056		

Performance of P5 under seen Prompts

Review-base Preference Prediction: Review Summarization:

																,				
Methods	Spo	orts	Bea	uty	То	ys	M - (1 1-		Sp	orts			Be	auty		Toys				
	RMSE	MAE	RMSE	MAE	RMSE	MAE	Methods	BLUE2	ROUGE1	ROUGE2	ROUGEL	BLUE2	ROUGE1	ROUGE2	ROUGEL	BLUE2	ROUGE1	ROUGE2	ROUGEL	
T0 (4-2)	0.6728	0.3140	0.6925	0.3324	0.8282	0.4201	T0 (4-1)	2.1581	2.2695	0.5694	1.6221	1.2871	1.2750	0.3904	0.9592	2.2296	2.4671	0.6482	1.8424	
T0 (4-4)	0.6503	0.2984	0.7066	0.3663	0.8148	0.4230	GPT-2 (4-1)	0.7779	4.4534	1.0033	1.9236	0.5879	3.3844	0.6756	1.3956	$\frac{0.6221}{0.6221}$	3.7149	0.6629	1.4813	
P5-S (4-2)	0.7293	0.3529	0.6233	0.3051	0.6464	0.3125														
P5-B (4-2)	0.6487	0.2847	0.6449	0.3168	0.6785	0.3342	P5-S (4-1)	2.4962	<u>11.6701</u>	2.7187	10.4819	2.1225	8.4205	1.6676	7.5476	2.4752	9.4200	1.5975	8.2618	
P5-S (4-4)	0.7565	0.3395	0.6262	0.3113	0.6577	0.3174	P5-B (4-1)	2.6910	12.0314	3.2921	10.7274	<u>1.9325</u>	8.2909	1.4321	7.4000	1.7833	8.7222	1.3210	<u>7.6134</u>	
P5-B (4-4)	0.6563	0.2921	0.6515	0.3106	0.6730	0.3342														

Direct Recommendation:

) (- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			Sports					Beauty			Toys					
Methods	HR@1	HR@5	NDCG@5	HR@10	NDCG@10	HR@1	HR@5	NDCG@5	HR@10	NDCG@10	HR@1	HR@5	NDCG@5	HR@10	NDCG@10	
BPR-MF	0.0314	0.1404	0.0848	0.2563	0.1220	0.0311	0.1426	0.0857	0.2573	0.1224	0.0233	0.1066	0.0641	0.2003	0.0940	
BPR-MLP	0.0351	0.1520	0.0927	0.2671	0.1296	0.0317	0.1392	0.0848	0.2542	0.1215	0.0252	0.1142	0.0688	0.2077	0.0988	
SimpleX	0.0331	0.2362	0.1505	0.3290	0.1800	0.0325	0.2247	0.1441	0.3090	<u>0.1711</u>	0.0268	0.1958	0.1244	0.2662	0.1469	
P5-S (5-1)	0.0638	0.2096	0.1375	0.3143	0.1711	0.0600	0.2021	0.1316	0.3121	0.1670	0.0405	0.1538	0.0969	0.2405	0.1248	
P5-B (5-1)	0.0245	0.0816	0.0529	0.1384	0.0711	0.0224	0.0904	0.0559	0.1593	0.0780	0.0187	0.0827	0.0500	0.1543	0.0729	
P5-S (5-4)	0.0701	0.2241	0.1483	0.3313	0.1827	0.0862	0.2448	0.1673	0.3441	0.1993	0.0413	0.1411	0.0916	0.2227	0.1178	
P5-B (5-4)	0.0299	0.1026	0.0665	0.1708	0.0883	0.0506	0.1557	0.1033	0.2350	0.1287	0.0435	0.1316	0.0882	0.2000	0.1102	
P5-S (5-5)	0.0574	0.1503	0.1050	0.2207	0.1276	0.0601	0.1611	0.1117	0.2370	0.1360	0.0440	0.1282	0.0865	0.2011	0.1098	
P5-B (5-5)	0.0641	0.1794	0.1229	0.2598	0.1488	0.0588	0.1573	0.1089	0.2325	0.1330	0.0386	0.1122	0.0756	0.1807	0.0975	
P5-S (5-8)	0.0567	0.1514	0.1049	0.2196	0.1269	0.0571	0.1566	0.1078	0.2317	0.1318	0.0451	0.1322	0.0889	0.2023	0.1114	
P5-B (5-8)	0.0726	0.1955	0.1355	0.2802	0.1627	0.0608	0.1564	0.1096	0.2300	0.1332	0.0389	0.1147	0.0767	0.1863	0.0997	

Observation: P5 achieves promising performances on the five task families when taking seen prompt templates as model inputs

Performance of P5 under unseen Prompts

Observation: Multitask prompted pretraining empowers P5 good robustness to understand unseen prompts with wording variations

Sequential Recommendation:

Explanation Generation:

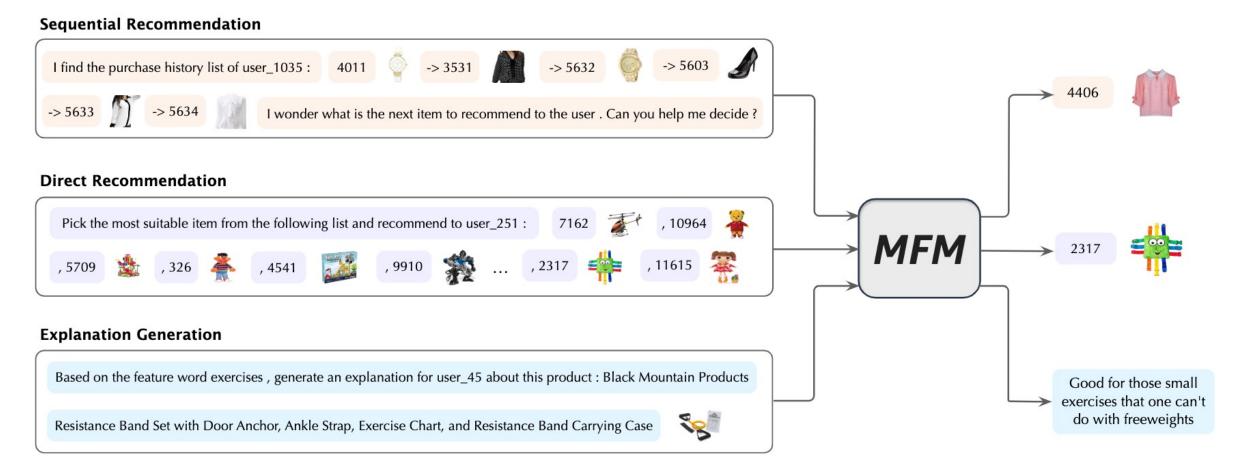
Mathada		Sr	ports			Be	eauty			7	Toys		- M. (1 - 1		S ₇	Sports	,	Beauty					7	Toys	
Methods	HR@5	NDCG@5	HR@10	NDCG@10	HR@5	NDCG@5	HR@10	NDCG@10	HR@5	NDCG@5	HR@10	NDCG@10	Methods _	BLUE4	ROUGE1	ROUGE2	ROUGEL	BLUE4	ROUGE1	ROUGE2	ROUGEL	BLUE4	ROUGE1	ROUGE2	ROUGEL
Caser	0.0116	0.0072	0.0194	0.0097	0.0205	0.0131	0.0347	0.0176	0.0166	0.0107	0.0270	0.0141	Attn2Seq	0.5305	12.2800	1.2107	9.1312	0.7889	12.6590	1.6820	9.7481	1.6238	13.2245	2.9942	10.7398
HGN	0.0189	0.0120	0.0313	0.0159	0.0325	0.0206	0.0512	0.0266	0.0321	0.0221	0.0497	0.0277	NRT	0.4793	11.0723	1.1304	7.6674	0.8295	12.7815	1.8543	9.9477	1.9084	13.5231	3.6708	11.1867
GRU4Rec	0.0129	0.0086	0.0204	0.0110	0.0164	0.0099	0.0283	0.0137	0.0097	0.0059	0.0176	0.0084	PETER	0.7112	12.8944	1.3283	9.8635	1.1541	14.8497	2.1413	11.4143	1.9861	14.2716	3.6718	11.7010
BERT4Rec	0.0115	0.0075	0.0191	0.0099	0.0203	0.0124	0.0347	0.0170	0.0116	0.0071	0.0203	0.0099	P5-S (3-3)	1.0447	14.9048	2.1297	11.1778	$\frac{1.2237}{1.2237}$	17.6938	2.2489	12.8606	2.2892	15.4505	3.6974	12.1718
FDSA	0.0182	0.0122	0.0288	0.0156	0.0267	0.0163	0.0407	0.0208	0.0228	0.0140	0.0381	0.0189	P5-B (3-3)	1.0407	14.1589	2.1220	10.6096	0.9742	16.4530	1.8858	11.8765	2.3185	15.3474	3.7209	12.1312
SASRec	0.0233	0.0154	0.0350	0.0192	0.0387	0.0249	0.0605	0.0318	0.0463	0.0306	0.0675	0.0374													
S ³ -Rec	0.0251	0.0161	0.0385	0.0204	0.0387	0.0244	0.0647	0.0327	0.0443	0.0294	0.0700	0.0376	PETER+	2.4627	24.1181	5.1937	18.4105	3.2606	<u>25.5541</u>	5.9668	<u>19.7168</u>	4.7919	<u>28.3083</u>	9.4520	22.7017
P5-S (2-3)	0.0272	0.0169	0.0361	0.0198	0.0503	0.0370	0.0659	0.0421	0.0648	0.0567	0.0709	0.0587	P5-S (3-9)	1.4101	23.5619	5.4196	17.6245	1.9788	25.6253	6.3678	19.9497	4.1222	28.4088	9.5432	22.6064
P5-B (2-3)	0.0364	0.0296	0.0431	0.0318	0.0508	0.0379	0.0664	0.0429	0.0608	0.0507	0.0688	0.0534	P5-B (3-9)	1.4689	23.5476	5.3926	17.5852	1.8765	25.1183	6.0764	19.4488	3.8933	27.9916	<u>9.5896</u>	22.2178
P5-S (2-13)	0.0258	0.0159	0.0346	0.0188	0.0490	0.0358	0.0646	0.0409	0.0647	0.0566	0.0705	0.0585	P5-S (3-12)	1.3212	23.2474	5.3461	17.3780	1.9425	25.1474	6.0551	19.5601	4.2764	28.1897	9.1327	22.2514
P5-B (2-13)	0.0387	0.0312	0.0460	0.0336	0.0493	0.0367	0.0645	0.0416	0.0587	0.0486	0.0675	0.0536	P5-B (3-12)	1.4303	23.3810	5.3239	17.4913	1.9031	25.1763	6.1980	19.5188	3.5861	28.1369	9.7562	22.3056

Direct Recommendation:

M.d. I			Sports					Beauty			Toys					
Methods	HR@1	HR@5	NDCG@5	HR@10	NDCG@10	HR@1	HR@5	NDCG@5	HR@10	NDCG@10	HR@1	HR@5	NDCG@5	HR@10	NDCG@10	
BPR-MF	0.0314	0.1404	0.0848	0.2563	0.1220	0.0311	0.1426	0.0857	0.2573	0.1224	0.0233	0.1066	0.0641	0.2003	0.0940	
BPR-MLP	0.0351	0.1520	0.0927	0.2671	0.1296	0.0317	0.1392	0.0848	0.2542	0.1215	0.0252	0.1142	0.0688	0.2077	0.0988	
SimpleX	0.0331	0.2362	0.1505	0.3290	0.1800	0.0325	0.2247	0.1441	0.3090	<u>0.1711</u>	0.0268	0.1958	0.1244	0.2662	0.1469	
P5-S (5-1)	0.0638	0.2096	0.1375	0.3143	0.1711	0.0600	0.2021	0.1316	0.3121	0.1670	0.0405	0.1538	0.0969	0.2405	0.1248	
P5-B (5-1)	0.0245	0.0816	0.0529	0.1384	0.0711	0.0224	0.0904	0.0559	0.1593	0.0780	0.0187	0.0827	0.0500	0.1543	0.0729	
P5-S (5-4)	0.0701	0.2241	0.1483	0.3313	0.1827	0.0862	0.2448	0.1673	0.3441	0.1993	0.0413	0.1411	0.0916	0.2227	0.1178	
P5-B (5-4)	0.0299	0.1026	0.0665	0.1708	0.0883	0.0506	0.1557	0.1033	0.2350	0.1287	0.0435	0.1316	0.0882	0.2000	0.1102	
P5-S (5-5)	0.0574	0.1503	0.1050	0.2207	0.1276	0.0601	0.1611	0.1117	0.2370	0.1360	0.0440	0.1282	0.0865	0.2011	0.1098	
P5-B (5-5)	0.0641	0.1794	0.1229	0.2598	0.1488	0.0588	0.1573	0.1089	0.2325	0.1330	0.0386	0.1122	0.0756	0.1807	0.0975	
P5-S (5-8)	0.0567	0.1514	0.1049	0.2196	0.1269	0.0571	0.1566	0.1078	0.2317	0.1318	0.0451	0.1322	0.0889	0.2023	0.1114	
P5-B (5-8)	0.0726	0.1955	0.1355	0.2802	0.1627	0.0608	0.1564	0.1096	0.2300	0.1332	0.0389	0.1147	0.0767	0.1863	0.0997	

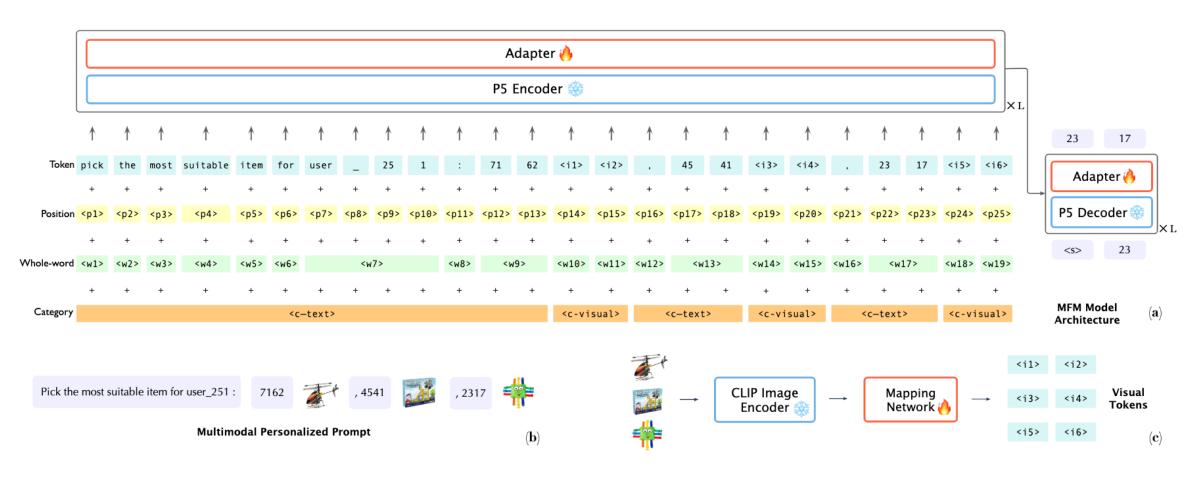
Easy Handling of Multi-modality Information

Item images can be directly inserted into prompts



Easy Handling of Multi-modality Information

Item images can be directly inserted into prompts



Easy Handling of Multi-modality Information

- Item images can be directly inserted into prompts
 - Multi-modality information further improves performance

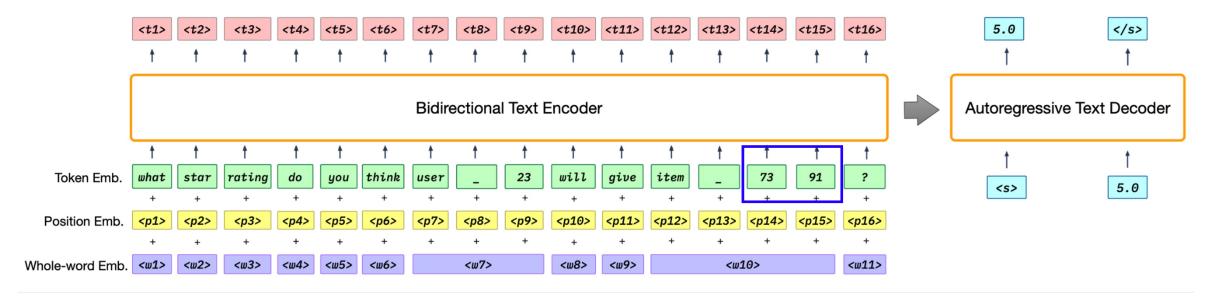
	Constant Description																		
M-41 1-		Sp	orts			Be	auty		M-41 1-			Sports					Beauty		
Methods	HR@5	NDCG@5	HR@10	NDCG@10	HR@5	NDCG@5	HR@10	NDCG@10	Methods	HR@1	HR@5	NDCG@5	HR@10	NDCG@10	HR@1	HR@5	NDCG@5	HR@10	NDCG@10
HGN	0.0189	0.0120	0.0313	0.0159	0.0325	0.0206	0.0512	0.0266	BPR-MF	0.0314	0.1404	0.0848	0.2563	0.1220	0.0311	0.1426	0.0857	0.2573	0.1224
SASRec	0.0233	0.0154	0.0350	0.0192	0.0387	0.0249	0.0605	0.0318	BPR-MLP	0.0351	0.1520	0.0927	0.2671	0.1296	0.0317	0.1392	0.0848	0.2542	0.1215
S ³ -Rec	0.0251	0.0161	0.0385	0.0204	0.0387	0.0244	0.0647	0.0327	VBPR	0.0262	0.1138	0.0691	0.2060	0.0986	0.0380	0.1472	0.0925	0.2468	0.1245
P5 (A-3)	0.0272	0.0169	0.0361	0.0198	0.0503	0.0370	0.0659	0.0421	P5 (B-5)	0.0574	0.1503	0.1050	0.2207	0.1276	0.0601	0.1611	0.1117	0.2370	0.1360
MFM (A-3)	0.0412	0.0345	0.0475	0.0365	0.0556	0.0427	0.0677	0.0467	MFM (B-5)	0.0606	0.1743	0.1185	0.2539	0.1441	0.0580	0.1598	0.1099	0.2306	0.1327
P5 (A-9)	0.0258	0.0159	0.0346	0.0188	0.0490	0.0358	0.0646	0.0409	P5 (B-8)	0.0567	0.1514	0.1049	0.2196	0.1269	0.0571	0.1566	0.1078	0.2317	0.1318
MFM (A-9)	0.0392	0.0327	0.0456	0.0347	0.0529	0.0413	0.0655	0.0454	MFM (B-8)	0.0699	0.1882	0.1304	0.2717	0.1572	0.0615	0.1655	0.1147	0.2407	0.1388
M. (1 1.		Clo	thing			Т	oys		Clothing					Toys					
Methods	HR@5	NDCG@5	HR@10	NDCG@10	HR@5	NDCG@5	HR@10	NDCG@10	Methods	HR@1	HR@5	NDCG@5	HR@10	NDCG@10	HR@1	HR@5	NDCG@5	HR@10	NDCG@10
HGN	0.0107	0.0071	0.0175	0.0092	0.0321	0.0221	0.0497	0.0277	BPR-MF	0.0296	0.1280	0.0779	0.2319	0.1112	0.0233	0.1066	0.0641	0.2003	0.0940
SASRec	0.0107	0.0066	0.0194	0.0095	0.0463	0.0306	0.0675	0.0374	BPR-MLP	0.0342	0.1384	0.0858	0.2327	0.1161	0.0252	0.1142	0.0688	0.2077	0.0988
S ³ -Rec	0.0076	0.0045	0.0135	0.0063	0.0443	0.0294	0.0700	0.0376	VBPR	0.0352	0.1410	0.0877	0.2420	0.1201	0.0337	0.1294	0.0808	0.2199	0.1098
P5 (A-3)	0.0478	0.0376	0.0554	0.0401	0.0655	0.0570	0.0726	0.0593	P5 (B-5)	0.0320	0.0986	0.0652	0.1659	0.0867	0.0418	0.1219	0.0824	0.1942	0.1056
MFM (A-3)	0.0603	0.0564	0.0632	0.0573	0.0662	0.0577	0.0749	0.0604	MFM (B-5)	0.0481	0.1287	0.0890	0.1992	0.1116	0.0428	0.1225	0.0833	0.1906	0.1051
P5 (A-9)	0.0455	0.0359	0.0534	0.0385	0.0631	0.0547	0.0701	0.0569	P5 (B-8)	0.0355	0.1019	0.0688	0.1722	0.0912	0.0422	0.1286	0.0858	0.2041	0.1099
MFM (A-9)	0.0569	0.0531	0.0597	0.0540	0.0641	0.0556	0.0716	0.0580	MFM (B-8)	0.0552	0.1544	0.1058	0.2291	0.1297	0.0433	0.1301	0.0875	0.2037	0.1110

Sequential Recommendation Performance

Direct Recommendation Performance

How to Index Items

- Item ID: item needs to be represented as a sequence of tokens
 - e.g., an item represented by two tokens <73> <91>



Different item indexing gives very different performance

RUTGERS

How to Index Items (create Item IDs)

- Three properties for good item indexing methods
 - Items are distinguishable (different items have different IDs)
 - Similar items have similar IDs (more shared tokens in their IDs)
 - Dissimilar items have dissimilar IDs (less shared tokens in their IDs)
- Three naïve Indexing methods
 - Random ID (RID): Item (73)(91), item (73)(12), ...
 - Title as ID (TID): Item (the)(lord)(of)(the)(rings), ...
 - Independent ID (IID): Item (1364), Item (6321), ...

Method		Amazo	on Sport	s		Amazo	n Beaut	y	Yelp					
1,1011104	HR@5	NCDG@5	HR@10	NCDG@10	HR@5	NCDG@5	HR@10	NCDG@10	HR@5	NCDG@5	HR@10	NCDG@10		
SASRec	0.0233	0.0154	0.0350	0.0192	0.0387	0.0249	0.0605	0.0318	0.0170	0.0110	0.0284	0.0147		
S ³ -Rec	0.0251	0.0161	0.0385	0.0204	0.0387	0.0244	0.0647	0.0327	0.0201	0.0123	0.0341	0.0168		
RID	0.0208	0.0122	0.0288	0.0153	0.0213	0.0178	0.0479	0.0277	0.0225	0.0159	0.0329	0.0193		
TID	0.0000	0.0000	0.0000	0.0000	0.0182	0.0132	0.0432	0.0254	0.0058	0.0040	0.0086	0.0049		
IID	0.0268	0.0151	0.0386	0.0195	0.0394	0.0268	0.0615	0.0341	0.0232	0.0146	0.0393	0.0197		

How to Index Items (create Item IDs)

- Three naïve Indexing methods
 - Random ID (RID): Item (73)(91), item (73)(12), ...
 - Very different items may share the same tokens
 - Mistakenly making them semantically similar
 - Title as ID (TID): Item (the)(lord)(of)(the)(rings)
 - Very different movies may share similar titles
 - Inside Out (animation) and Inside Job (documentary)
 - The Lord of the Rings (epic fantasy) and The Lord of War (crime drama)
 - Independent ID (IID): Item (1364), Item (6321), ...
 - Too many out-of-vocabulary (OOV) new tokens need to learn
 - Computationally unscalable

Meticulous Item Indexing Methods are Needed

Title-based indexing

According to what places user_1 has visited: The Great Greek, Sal's Pizza, Las Vegas Cigar Outlet, Weiss Restaurant Deli Bakery, Can you recommend another place to the user?

Random indexing

According to what places user_1 has visited: location_1123, location_4332, location_8463, location_12312, Can you recommend another place to the user?

Independent indexing

According to what places user_1 has visited: location_<IID1>, location_<IID2>, location_<IID3>, location_<IID4>, Can you recommend another place to the user?

Sequential indexing

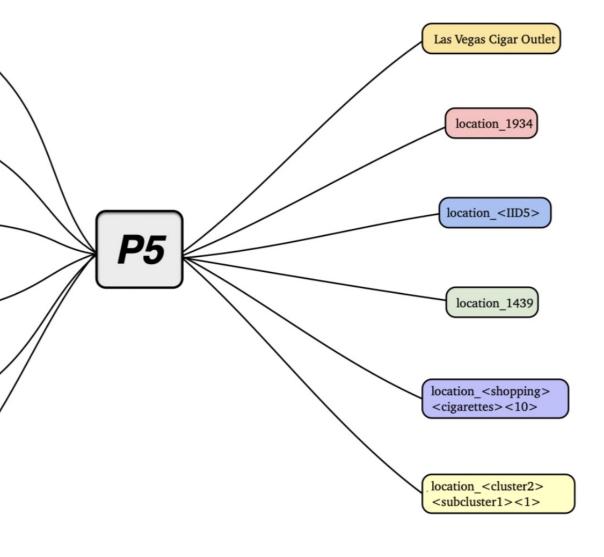
According to what places user_1 has visited: location_1001, location_1002, location_1003, location_1004, Can you recommend another place to the user?

Semantic indexing

According to what places user_1 has visited: location_<restaurant><Greek><2>, location_<restaurant><American><FaseFood><10>, Can you recommend another place to the user?

Collaborative indexing

According to what places user_1 has visited: location_<cluster1><subcluster2><1>, location_<cluster1><subcluster5><3>, Can you recommend another place to the user?



Sequential Indexing (SID)

Leverage the local co-appearance information between items

Training Sequence											Validation	Testing
User 1	1001	1002	1003	1004	1005	1006	1007	1008	1009		1018	1019
User 2	1010	1011	1001	1012	1008	1009	1013	1014			1022	1023
User 3	1015	1016	1017	1007	1018	1019	1020	1021	1009		1015	1016
User 4	1022	1023	1005	1002	1006	1024					1002	1008
User 5	1025	1026	1027	1028	1029	1030	1024	1020	1021	1031	1033	1034

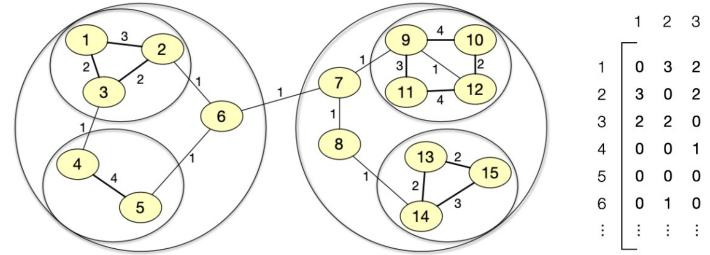
• After tokenization, co-appearing items share similar tokens

• Item 1004: (10)(04)

• Item 1005: (10)(05)

Collaborative Indexing (CID)

- Leverage the global co-appearance information between items
 - Spectral Matrix Factorization over the item-item co-appearance matrix
 - Hierarchical Spectral Clustering



(a) Recursive spectral clustering on item co-appearance graph

```
      1
      2
      3
      4
      5
      6
      ...
      1
      2
      3

      1
      0
      3
      2
      0
      0
      0
      ...
      1
      5
      -3
      -2

      2
      3
      0
      2
      0
      0
      1
      ...
      2
      -3
      6
      -2

      3
      -2
      -2
      -2
      6
      0
      0
      1
      0
      0
      1

      4
      0
      0
      1
      ...
      5
      0
      0
      0
      0

      5
      0
      1
      0
      0
      1
      0
      0
      0
      0
      0
      0
      0
      0
      0
      1
      0
      0
      1
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      1
      0
      0
      1
      0
      0
      1
      0
      0
      1
      0
      0
      1
      0
      0
      1
      0
      0
      1
      0
      0
      1
      0
      0
      1
      0
      0
      1
      0
```

(b) Adjacency matrix

 1
 5
 -3
 -2
 0
 0
 0
 ...

 2
 -3
 6
 -2
 0
 0
 -1
 ...

 3
 -2
 -2
 6
 -1
 0
 0
 ...

 4
 0
 0
 1
 5
 -4
 0
 ...

 5
 0
 0
 0
 -4
 5
 -1
 ...

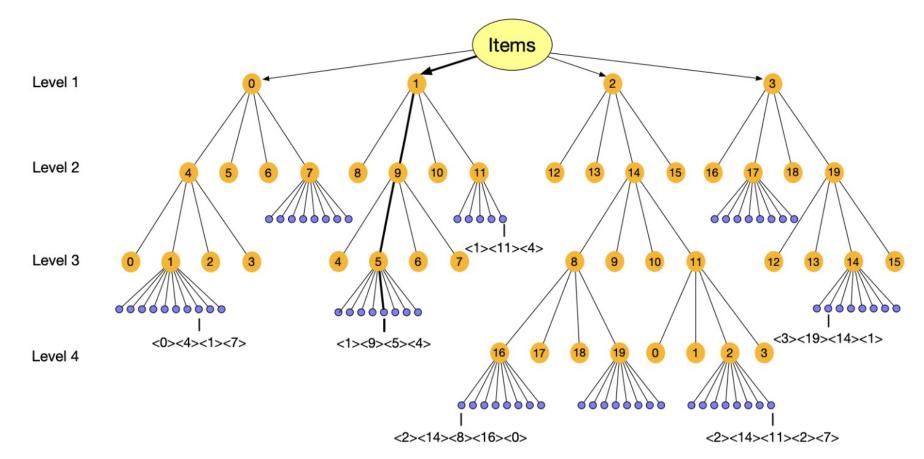
 6
 0
 1
 0
 0
 -1
 2
 ...

 :
 :
 :
 :
 :
 :
 :
 :

(c) Laplacian matrix

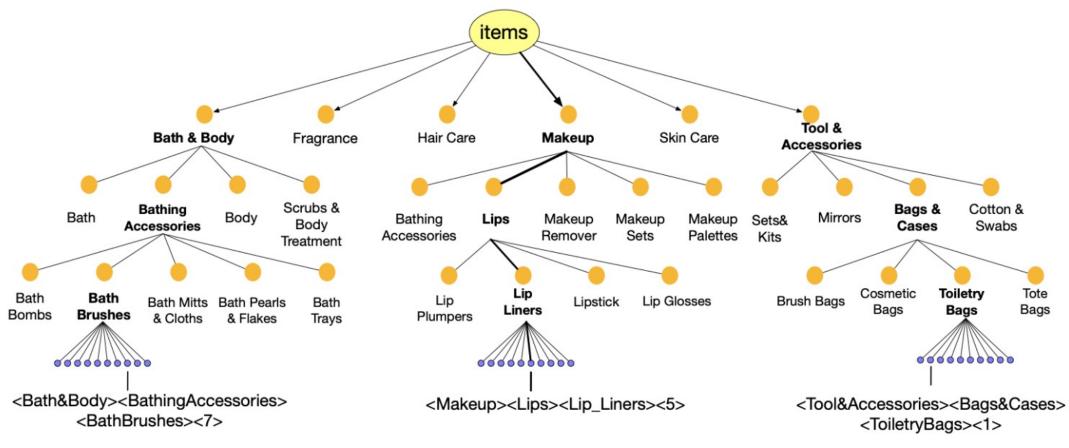
Collaborative Indexing (CID)

- Leverage the global co-appearance information between items
 - Root-to-Leaf Path-based Indexing
 - Items in the same cluster share more tokens



Content-based Indexing (ContID)

- Leverage the item content information for item indexing
 - e.g., the multi-level item category information in Amazon



Hybrid Indexing (HID)

- Concatenate more than one of the following indices
 - Random ID (RID)
 - Title as ID (TID)
 - Independent ID (IID)
 - Sequential ID (SID)
 - Collaborative ID (CID)
 - Content-based ID (ContID)
 - For example, if an item's content ID and collaborative ID are as follows:
 - ContID: \(\lambda\) (Lips\\(\text{Lip_Liners}\\\(5\)\)
 - CID: \(1)\(9)\(5)\(4\)
 - Then its Hybrid ID is \(\lambda \text{Makeup} \lambda \text{Lips} \lambda \text{Lip_Liners} \lambda (1) \lambda 9 \lambda 5 \lambda 4)

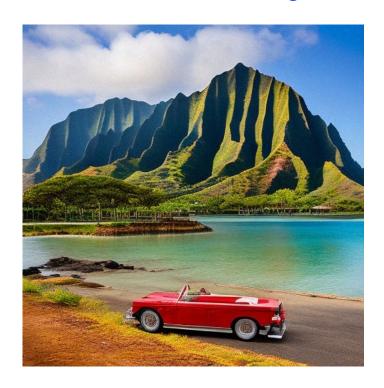
Different Item Indexing Gives Different Performance

Method		Amazo	on Sport	ts		Amazo	n Beaut	ty	Yelp			
	HR@5	NCDG@5	HR@10	NCDG@10	HR@5	NCDG@5	HR@10	NCDG@10	HR@5	NCDG@5	HR@10	NCDG@10
Caser	0.0116	0.0072	0.0194	0.0097	0.0205	0.0131	0.0347	0.0176	0.015	0.0099	0.0263	0.0134
HGN	0.0189	0.0120	0.0313	0.0159	0.0325	0.0206	0.0512	0.0266	0.0186	0.0115	0.0326	0.159
GRU4Rec	0.0129	0.0086	0.0204	0.0110	0.0164	0.0099	0.0283	0.0137	0.0176	0.0110	0.0285	0.0145
BERT4Rec	0.0115	0.0075	0.0191	0.0099	0.0203	0.0124	0.0347	0.0170	0.0051	0.0033	0.0090	0.0090
FDSA	0.0182	0.0122	0.0288	0.0156	0.0267	0.0163	0.0407	0.0208	0.0158	0.0098	0.0276	0.0136
SASRec	0.0233	0.0154	0.0350	0.0192	0.0387	0.0249	0.0605	0.0318	0.0170	0.0110	0.0284	0.0147
S ³ -Rec	0.0251	0.0161	0.0385	0.0204	0.0387	0.0244	0.0647	0.0327	0.0201	0.0123	0.0341	0.0168
RID	0.0208	0.0122	0.0288	0.0153	0.0213	0.0178	0.0479	0.0277	0.0225	0.0159	0.0329	0.0193
TID	0.000	0.000	0.000	0.000	0.0182	0.0132	0.0432	0.0254	0.0058	0.0040	0.0086	0.0049
IID	0.0268	0.0151	0.0386	0.0195	0.0394	0.0268	0.0615	0.0341	0.0232	0.0146	0.0393	<u>0.0197</u>
SID	0.0264	0.0186	0.0358	0.0216	0.0430	0.0288	0.0602	0.0368	0.0346	0.0242	0.0486	0.0287
CID	0.0313	0.0224	0.0431	0.0262	0.0489	0.0318	0.0680	0.0357	0.0261	0.0171	0.0428	0.0225
ContID	0.0274	0.0193	0.0406	0.0235	0.0433	0.0299	0.0652	0.0370	0.0202	0.0131	0.0324	0.0170
SID+IID	0.0235	0.0161	0.0339	0.0195	0.0420	0.0297	0.0603	0.0355	0.0329	0.0236	0.0465	0.0280
CID+IID	0.0321	0.0227	0.0456	0.0270	0.0512	0.0356	0.0732	0.0427	0.0287	0.0195	0.0468	0.0254
ContID+IID	0.0291	0.0196	0.0436	0.0242	0.0501	0.0344	0.0724	0.0411	0.0229	0.0150	0.0382	0.0199
ContID+CID	0.0043	0.0031	0.0070	0.0039	0.0355	0.0248	0.0545	0.0310	0.0021	0.0016	0.0056	0.0029

- Naïve indexing methods
- Advanced indexing methods
- Hybrid indexing methods
 - Advanced indexing methods are better than naïve methods
 - Hybrid indexing can further improve performance

The Future of Generative Recommendation

- Recommendation as Personalized On-demand Generation
 - Recommend existing items vs. recommend newly generated items
 - Traveling in Hawaii, want to make a post on Instagram
 - Personalized generation of candidate images for users to consider



The Future of Generative Recommendation

- Recommendation as Personalized On-demand Generation
 - Personalized Advertisement Generation
 - Same ad, different wording, real-time generation given user's context
 - e.g., an environmental protection ad for an NGO

For Children:

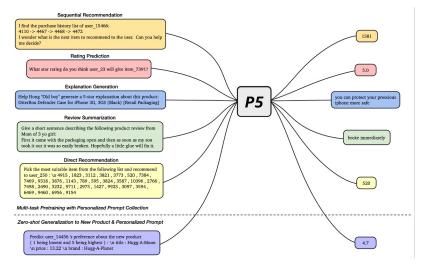
Join us in protecting our planet. Let's work together to make the world a better place for ourselves and for future generations.

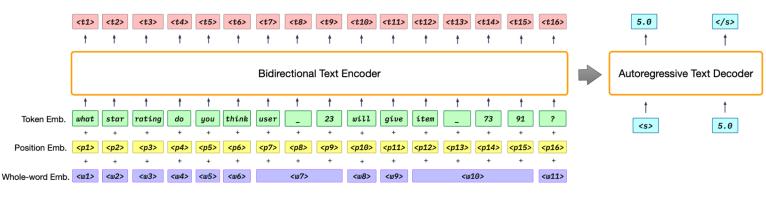
For Business Leaders:

Join the movement towards sustainability and create a brighter future for your business and our planet. By adopting environmentally-friendly practices, you can reduce your costs, attract new customers, and enhance your reputation as a responsible business leader.

Summary

- From Discriminative Recommendation to Generative Recommendation
 - From multi-stage ranking to single-stage ranking
 - Multi-task learning with the same foundation model
 - Easily handle multi-modality data
 - Various item indexing methods for recommendation foundation models
 - Recommendation as Personalized On-demand Generation
 - From recommending existing items to recommending newly generated items





Yongfeng Zhang

Department of Computer Science, Rutgers University

yongfeng.zhang@rutgers.edu

http://yongfeng.me

References

- [1] Geng, Shijie, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. "Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5)." RecSys 2022.
- [2] Koren, Yehuda, Robert Bell, and Chris Volinsky. "Matrix factorization techniques for recommender systems." Computer 42, no. 8 (2009): 30-37.
- [3] Cheng, Heng-Tze, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson et al. "Wide & deep learning for recommender systems." DLRS 2016.
- [4] Jiang, Biye, Pengye Zhang, Rihan Chen, Xinchen Luo, Yin Yang, Guan Wang, Guorui Zhou, Xiaoqiang Zhu, and Kun Gai. "DCAF: A Dynamic Computation Allocation Framework for Online Serving System." DLP-KDD 2020.
- [5] Covington, Paul, Jay Adams, and Emre Sargin. "Deep neural networks for youtube recommendations."
 In Proceedings of the 10th ACM conference on recommender systems, pp. 191-198. 2016.
- [6] Chen, Hanxiong, Shaoyun Shi, Yunqi Li, and Yongfeng Zhang. "Neural collaborative reasoning." In Proceedings of the Web Conference 2021, pp. 1516-1527. 2021.
- [7] Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. "Attention is all you need." Advances in neural information processing systems 30 (2017).
- [8] Zhang, Yongfeng, and Xu Chen. "Explainable recommendation: A survey and new perspectives."
 Foundations and Trends® in Information Retrieval 14, no. 1 (2020): 1-101.

- [9] Li, Lei, Yongfeng Zhang, and Li Chen. "Personalized prompt learning for explainable recommendation." ACM Transactions on Information Systems 41, no. 4 (2023): 1-26.
- [10] Geng, Shijie, Jianbo Yuan, Yu Tian, Yuxiao Chen, and Yongfeng Zhang. "HiCLIP: Contrastive language-image pretraining with hierarchy-aware attention." ICLR 2023.
- [11] Ji, Jianchao, Zelong Li, Shuyuan Xu, Max Xiong, Juntao Tan, Yingqiang Ge, Hao Wang, and Yongfeng Zhang. "Counterfactual Collaborative Reasoning." In Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, pp. 249-257. 2023.
- [12] Geng, Shijie, Zuohui Fu, Juntao Tan, Yingqiang Ge, Gerard De Melo, and Yongfeng Zhang. "Path language modeling over knowledge graphsfor explainable recommendation." In Proceedings of the ACM Web Conference 2022, pp. 946-955. 2022.
- [13] Li, Lei, Yongfeng Zhang, and Li Chen. "Personalized Transformer for Explainable Recommendation." In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4947-4957. 2021.
- [14] Li, Lei, Yongfeng Zhang, and Li Chen. "Generate neural template explanations for recommendation." In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 755-764. 2020.
- [15] Zhang, Yongfeng, Guokun Lai, Min Zhang, Yi Zhang, Yiqun Liu, and Shaoping Ma. "Explicit factor models for explainable recommendation based on phrase-level sentiment analysis." In Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval, pp. 83-92. 2014.