Deep Passage Retrieval in E-Commerce

Vinay Rao Dandin*
vinay.dandin@flipkart.com
Flipkart US R&D Center
Redmond, USA

ABSTRACT

We have developed a conversational assistant called the Decision As-
sistant (DA) to help customers make purchase decisions. To answer
customer queries successfully, we use a question and answering
(QnA) system that retrieves data on product pages and extracts
answers. With various data sources available on the product pages,
we deal with unique challenges such as different terminologies and
data formats for successful answer retrieval. In this paper, we pro-
pose two different bi-encoder architectures for retrieving data from
each of the two data sources considered — product descriptions
and specifications. The proposed architectures beat the baseline
approaches while maintaining a high recall and low latency in pro-
duction. We envision that the proposed approaches can be widely
applicable to other e-commerce QnA systems.

KEYWORDS

natural language processing, passage retrieval, neural networks,
retriever-reader systems, bi-encoder architecture

ACM Reference Format:

Vinay Rao Dandin, Ozan Ersoy, and Kyung Hyuk Kim. 2023. Deep Passage
Retrieval in E-Commerce. In Companion Proceedings of the ACM Web Con-
ference 2023 (WWW °23 Companion), April 30-May 4, 2023, Austin, TX, USA.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3543873.3587624

1 INTRODUCTION

Conversational assistants have become ubiquitous in recent years
[1, 11, 12]. In e-commerce, they can help the customer discover
products, make a purchase decision, and offer customer support. On
our online e-commerce marketplace, we have built a conversational
assistant called Decision Assistant (DA) with the goal of helping
the customer make the purchase decision similar to an in-person
sales assistant in a store.

DA is available on our product pages to answer any product-
related query, ranging from questions on product specifications
like "What is the battery capacity of this mobile?" to offers and
discounts, exchanges, or warranties. DA is available for mobile and
fashion verticals in its current iteration. In particular, to answer
product-specific questions, two main sources of data are used —

*Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WWW 23 Companion, April 30-May 4, 2023, Austin, TX, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9419-2/23/04...$15.00
https://doi.org/10.1145/3543873.3587624

Ozan Ersoy
ozan.ersoy@flipkart.com
Flipkart US R&D Center

Redmond, USA

Kyung Hyuk Kim*
kyung.kim@flipkart.com
Flipkart US R&D Center

Redmond, USA

product descriptions (called Rich Product Descriptions; RPDs) and
product specification key-value stores (KVs). This data is usually
provided by product vendors and is considered the most reliable
data source at hand. If we are not able to find an answer in RPDs
and KVs, we fall back to user-generated content such as reviews.

We approach this question and answering (QnA) task by taking
a retriever and reader approach. The first step is the contextual
retriever where we select relevant passages which might contain
an answer, given RPDs and KVs. The second step is the reader or
the question answering step which identifies answer spans given
the subset of passages retrieved by the retriever.

The key challenge around this retrieval task is that the termi-
nology used in the questions and the relevant answers are often
significantly different; for example,

Q: "How long can the phone last?"
A: "6000 mAh battery that offers a standby time of up to 57 days."

Q: "What is the resolution of the screen?”
A: "1520x720 Pixels".

Another challenge lies in the nature of different data formats
and contents of RPDs and KVs. RPDs mainly consist of descriptive
paragraphs of product features while KV stores contain product
specifications as key-value pairs. This difference in the data formats
and contents give rise to its own set of challenges in the retrieval
task. We propose two different model architectures that are uniquely
suited for each data source to tackle this challenge.

The rest of the paper is organized as follows: Section 2 contains
related work and section 3 discusses the methods we used for the re-
triever. Section 4 addresses experiments and results. Finally, section
5 contains the conclusion and future work.

2 RELATED WORK

2.1 Passage retrieval

Earlier work on passage retrieval represented documents and queries
as sparse vectors, with each dimension corresponding to a term.
TF-IDF [8, 18] and BM25 [17] are the popular weighting schemes
widely used today. However, these approaches fail to capture the
contextual or semantic meaning of the query and documents. To
overcome this limitation, latent semantic analysis was proposed by
representing documents with low-dimension dense vectors [4].
With the advent of deep learning, mainly two different mod-
eling approaches became popular for retrieval — bi-encoder (or
dual encoder) and cross-encoder. [7] proposed bi-encoder with an
embedding-based bag-of-words model where queries and docu-
ments were embedded independently, later extended by [15, 19].
Documents are ranked based on their cosine similarity with the

https://orcid.org/0009-0000-3297-7105
https://orcid.org/0009-0004-8601-766X
https://orcid.org/0000-0002-7191-9917
https://doi.org/10.1145/3543873.3587624
https://doi.org/10.1145/3543873.3587624

WWW ’23 Companion, April 30-May 4, 2023, Austin, TX, USA

query. However, bi-encoder approaches show limitations in cap-
turing fine-grained interactions between the query and documents.
To overcome this, [14] and [21] proposed a cross-encoder approach
where the query and documents are jointly embedded.

Earlier retrieval systems often took two-step approaches [14, 20]:
(1) traditional retrieval based on sparse vector representations [3]
and (2) re-ranking based on neural systems [6, 16]. [9] introduced
the dense passage retrieval (DPR) which uses low dimensional dense
vector embeddings and approximate nearest neighbors to retrieve
and rank documents. It’s a seminal paper in the field and proposes
an efficient technique for training bi-encoders, of which the concept
is applied to our batch sampling strategies. For a detailed empirical
study on sparse and dense information retrieval systems, please
refer to [10].

2.2 Key-Value retrieval

Apart from documents, the retrieval systems can also use knowl-
edge bases (KBs) as their data source. Specifically, [5] proposed
key-value retrieval networks for task-oriented dialogue, and [13]
proposed key-value memory networks for directly reading both
documents and KBs. Our KV task falls in between KB and docu-
ments in that both questions and answers can contain either or
even both keys and values; for example, "What is the ram size?",
"Does this phone come with 2GB ram?", "2GB?". Thus, the various
techniques mentioned in this and the previous sections are applica-
ble. Here, the unit of data changes from paragraphs to key-value
pairs although the number of tokens in KV pairs is significantly
shorter than RPD. In this paper, we use a bi-encoder model for the
KV retrieval with keys and values concatenated as the "document”.

3 METHODS
3.1 RPD Retrieval

3.1.1 Model Architecture. We implemented a bi-encoder model
with two independent encoder branches [9, 13] (refer to Figure 1).
Here, in each branch the fastText-based sentence embedding vectors
were feed-forwarded and concatenated with the bi-LSTM sentence
embedding vectors. This feed-forward structure helped increase the
model performance compared to the baselines as shown in Table 1.

3.1.2 Model Description. During the model training, relevance
probabilities between a query and a set of candidate answers are
computed by

p = softmax(q -AT). (1)

Here, q is a query embedding obtained from the query branch and
A embedding matrix with d X D dimensions for answer candidates
obtained from the answer branch, with d being the dimension of a
batch of answer candidates and D the embedding vector dimension.
p is compared with ground truth labels (y) and the cross-entropy
loss is computed based on p and y. Please note that the embedding
from each branch is the concatenation of the fastText and bi-LSTM
sentence embedding vectors and thus its dimension D is the sum
of both embedding vector dimensions. The underlying assumption
in the softmax is that there is only one relevant paragraph within
each training batch of size d. In the next section, we describe in
detail how we ensured this assumption in the batch sampling.

Vinay Rao Dandin, Ozan Ersoy, and Kyung Hyuk Kim

0.1 Onegative)

] N
Foat BILSTM query — Predicted Labeled
asi
query HEs | mencg ori concat 004 O]
Lo\
" 0.02 Ofnegative)
|| Fast ,| BILSTM answer_1 il R
answer® == 0.02 Gpogai)
Tokenizer, FastText, 08 1(Positive)
\

BiLSTM+Attention 0.01 |« »| Ofnegative).

Softmax

o
o o ° 001 | g | Oegaive)
° ° ° 8
° 3 ° 005 | m | Oegaive)
i v _ 001 | § | Oegatie)
Fast BILSTM answer_n <o
answer n - = -n:om:al s ye—— 2
Text embedding innerproduct 0.03 | = | Osgaive)
(matmul / 0.01 2 Ofegative)

cosine sim)

Figure 1: Model architecture for the RPD retrieval: a bi-
encoder with two independent encoder branches was used.
For both the branches, each text input was split into tokens,
converted into fastText word embedding vectors, and used as
input for bi-LSTM. The output of the bi-LSTM was concate-
nated with the fastText sentence embedding — an embedding
vector averaged over the fastText word embedding vectors
of all the sentence words.

During inference, when a user types in a query in DA, a set
of RPDs from a product page where the user is on are treated as
answer candidates (Figure 2). The user query serves as input to the
query branch and the RPDs as input to the answer branch return-
ing query and answer embedding vectors respectively. The inner
product between the query and each answer embedding vector is
computed and the paragraphs corresponding to top-k inner prod-
ucts are selected as output. Here, the main task is to retrieve the
most relevant paragraphs with high recall.

3.1.3 Batch Sampling During Training. During the model training,
each batch of size d (= number of user queries) is prepared by ran-
domly selecting d queries from the train data set which have unique
intents, i.e., no duplicate-intent queries. In this way, we made sure
that there is only one positive pair existing in each batch when
paired with all the answers available within each batch. For exam-
ple, the first query in Fig. 3 is related to the finger_print_unlock
intent while all the other queries are to different intents and the
same logic holds for all the other queries. Thus, this way of nega-
tive sampling strategies will guarantee one positive sample in our
Softmax computation [6, 9]. The loss function for each batch was
computed by using the following relevance probabilities:

p = softmax(q -AT) (2)
where p is a d X d matrix, q is a d X D matrix, and A is a d X D matrix.
The softmax function is applied to each row of q - AT In this way,
we efficiently computed the loss function with full vectorization.
For the intent annotation, we used our in-house intent prediction
model.

3.2 Key-Value Retrieval

3.2.1 Model Architecture. We took a supervised learning approach
and have done multiple experiments with different model archi-
tectures/weighting schemes and the final one showing the best
performance was a bi-encoder with a bi-LSTM query branch and
fastText simple-average answer branch (Fig. 4 and Table 2).

3.2.2 Model Description. During the model training, relevance
probabilities between a query and a set of candidate answers (here,

Deep Passage Retrieval in E-Commerce

“What kind of battery does it have?”

WWW ’23 Companion, April 30-May 4, 2023, Austin, TX, USA

The top-k answer candidates
are selected and passed to
the RPD QnA model.

[Foxt BILSTM query
query [Text —»| embedding (context |—| concat
vector) N S
\ N\ Similarity Scores
A \
l AN wer 1 Fast BILSTM answer_1 \:X 0.8
\ :
Te-as Tokenizer, FastText, \
BILSTM+Attention \
: M- > : ° \ ©
2 L] \ ©
° . | \ o .
answern || Fast BiLSTManswern | [12 0.1
- h" (e et o {ﬂ'—m concat —
inner-product

(matmul)

Figure 2: Inference pipeline for the RPD retrieval

question answer intent

Does ithave Unlocking the Redmi Y2 is as easy as it gets. You can either use the fingerprint sensor

fingerprint unloci < oot a Fecs (FiR ealiis decision_product_spec__unlock_finger_print_unlock

ether you're watching videos or playing games, enjoy a stunning visual experience
with the Redmi K20 which comes with a 16.23-cm (6.39) AMOLED Display, 91.9%
screen-to-body ratio, HOR range and a 100 DCI-P3 colour gamut.

what does amol
disploy offers K2 decision_product_spec__ display_display_type
What smart feature:
does the Nokia
smartphone have?

This Nokia smartphone comes with multiple smart features, including Google
Assistant, Digital Wellbeing, Adaptive Battery, App Actions, Google Lens, and Visual
‘Snapshot. The Google Assistant effectively simplifies your life

decision_product_spec__processor__processor

how many mAh
battery it has?

Its 4230 mAN battery offers up to 22 hours of browsing, up to 14 hours of playing

videos on YouTube, and up to 36 hours of usage when the screen is on standby CUI Lt I TR I IR

what i the rear
camera resolution?

thas a high-definition 8 MP rear camera with a powerful LED flashiight that lets you o o ooy o
take clear images even in low-light conditions, —product.spec._¢ S -primary.quality
Powered by an up to 1.65 GHz octa-core processor, this smartphone ensures easy
multitasking. Also, it has 3 GB of RAM and 32 GB of ROM to ensure seamless.
performance and to store images, videos, and much more.

How much ROM does

this phone have? decision_product_spec__memory__memory

< Positive Question-Answer Pair

<—> Negative Question-Answer Pair

Figure 3: RPD train batch example: For each user query, we
ensure that there is one positive answer (paragraph) and
d — 1 negative answers by pulling unique intent queries, i.e.,
duplicate intents are not allowed within each batch.

Tokenizer, FastText,
BiLSTM+Attention

query embedding
(context vector)

“What is the resolution of the

screen?” key+value1 FastText key+value1l
——— (aspay featuros distay s25) embedding
key-+value2 FastText key+vall,.|e2 %
oy oaures resoution)
For a given FSN, a list of S embedding £
keys are obtained from ° o %
the product specification o o 3
table (or/and possibly o o
‘with NER)
key+value_n | Fastlext | key+value_n
(dsply fatres esoltion pe) embedding

product

Figure 4: Model architecture for the KV retrieval: A user
query and a set of key-value pairs are processed by the query
and answer branches, respectively. Both the user query and
each of the key-value pairs (key and value are concatenated)
are tokenized and converted into fastText word embedding
vectors. The word embedding vector for the query is pro-
cessed by the bi-LSTM encoder, while that for the key-value
pair is simply averaged over the tokens.

key-value pairs) were computed by Eq. 1. Please note that the crucial
difference from the RPD model is that only the query branch is
trained (supervised learning) but the answer branch is not. Since the
input to the answer branch is a set of key-value pairs comprising a
few words, bi-LSTM is unnecessary. Thus the answer embedding
is computed by averaging the fastText embedding vectors of each
key and value word along with other features such as the header
of the KV table. The cross-entropy loss function is computed in

exactly the same way as the RPD case. During back-propagation,
the model weights in the query branch are adjusted so that the
query embedding vectors become similar/dissimilar to the answer
embedding vectors for the positive/negative pairs (refer to Fig. 4).

During inference, a set of key-value pairs from KV on a user-
landing product page are treated as answer candidates, which are
taken as input to the answer branch, returning answer embedding
vectors. The inner product between the query and each answer em-
bedding vector is computed and the key-value pairs corresponding
to top-k inner products are selected as output.

3.2.3 Batch Sampling During Training. We took a different batch
sampling approach for KV; for a given pair of (product_id, query),
we assumed that there is only one relevant key-value pair in the
product specification table of the product_id, and assumed all the
other key-value pairs as negative. Considering there are typically
100 keys per product_id, this sampling strategy provided a large
number of negative samples with many variations of key-value
pairs. Thus, the product specification intents were not utilized
for the sampling strategy for this KV retrieval. For each batch, 64
(product_id, query) pairs were considered.

4 EXPERIMENTS AND RESULTS

4.1 Data sets used

The data used for training all models (for both RPD and KV re-
trieval tasks) was refactored from the labeled set prepared for the
downstream reader steps: span-based QnA. Since we know where
an answer to a specific question is we could also easily extract the
ground truth paragraphs where the answer lies in.

For both the RPD and KV retrieval tasks, the data sets were then
split into training and validation sets while keeping the products
unique in each set. This was done to prevent any feature leak and
to ascertain the model was not trained on the same context (RPDs
and KVs) that also exists in the validation data set. We reserved 4
product_id’s as a test data set, which includes 347 (77 + 92 + 83 +
95) labeled question-answer pairs for RPD retrieval and 789 labeled
question-answer pairs for KV retrieval. While the size of the test
data set seems low, we ensured enough diversity in the labeled
question-answer pairs.

For the RPD retrieval task, this exercise resulted in about 2000
samples in training and about 400 records in the validation set.

WWW ’23 Companion, April 30-May 4, 2023, Austin, TX, USA

Requiring more data to train the model, the training set was aug-
mented using paraphrasing and synthetic question generation. Af-
ter the augmentation, the final training set size became around
13,500 records.

For the key-value retrieval task, our labeled data set consists of
3,277 records for training and 782 records for validation. We did not
deploy augmentation techniques for this task; we had more data to
start with and the task is somewhat more relaxed (k is higher in
this case) and sample efficient.

4.2 Baseline Setup

4.2.1 RPD Retrieval. As abaseline model, we implemented a sparse
vector approach based on the BM25 algorithm [17] using Elastic-
Search. We indexed RPD paragraphs for all product_id’s in Elas-
ticSearch and used its BM25 implementation to retrieve relevant
RPDs given a user query. As a baseline for the dense vector ap-
proach, an unsupervised bi-encoder based on fastText embeddings
[2] was used. In each encoder, we averaged fastText word embed-
ding vectors weighted by TF-IDF [8, 18] scores for both a user
query and candidate RPDs and rank the cosine similarity scores.
The fastText model is trained with user-generated content (such
as user reviews and FAQs), product catalog, and human-agent chat
data. Further, we had a third model where we used a pre-trained bi-
encoder RoBERTa sentence transformer[16] to encode user queries
and RPDs. These models showed limited performance when user
queries are significantly different from the corresponding answers
in terminology.

A high-level requirement of the task was that it needed to be fast
enough to not overload the end-to-end pipeline. Thus, we explored
simpler models using the LSTM architecture and did not explore
the transformer models further.

4.2.2 KV Retrieval. For this retrieval task, we used an unsupervised
bi-encoder model as well similar to the one mentioned above albeit
with a small difference. Specifically, the query embedding is con-
structed by averaging fastText word embedding vectors weighted
by TF-IDF scores [8, 18], while the answer embedding by taking
a simple average over the fastText word embedding vectors (bi-
encoder (fastText) in Table 2). This unsupervised model showed
limited performance since the embedding vector spaces for user
queries and their answers can be significantly different from each
other.

4.3 Evaluation Metrics

For both the retrieval tasks, performance was measured by Recall @
top k which considers a prediction as a success if the ground truth
RPD passage or KV pair is retrieved in the top k. For RPD retrieval,
we decided k = 3 for maximal recall because k = 4 and higher
can make the retrieved texts too long to deal with the downstream
BERT-based QnA model, which extracts an answer span from the
retrieved paragraphs. On a similar note, we decided on k = 20 for
KV retrieval.

4.4 Results

4.4.1 RPD Retrieval. Table 1 shows the bi-encoder models with the
fastText-embedding feed-forward loop provide better recall than
the one without feed-forward.

Vinay Rao Dandin, Ozan Ersoy, and Kyung Hyuk Kim

% Roberta- | Elastic- | bi-encoder | bi-encoder | bi-encoder
STS search | (fastText) | (bi-LSTM) | (bi-LSTM +
(BM25) feedforward)
Top@1 - - 76.37 89.34 87.32
Top@2 - - 88.76 94.81 96.25
Top@3 86.1 88.2 93.08 97.98 98.27
Top@4 94.81 98.85 100

Table 1: RPD passage retrieval: Top k recall for the baseline
models and two different bi-encoder models.

% bi-encoder | bi-encoder bi-encoder
(fastText) | (value-only) | (key-value-header concat)
Top@1 60.17 65.90 70.60
Top@2 77.35 80.14 83.02
Top@3 85.71 86.69 89.23
Top@20 95.06 97.71 98.10

Table 2: Key-value retrieval: Top k recall for a variation of
bi-encoder models. In bi-encoder (value-only and key-value-
header concat), a user query is processed by bi-LSTM and the
corresponding answer branch input with TF-IDF-weighted
average over fastText word embedding vectors.

We experimented with different relevance probabilities:

p = softmax|(q®) - (A®)]. (3)

where @ is a D X D matrix, transforming each query/answer can-
didate embedding vector leading to more flexibility for the model
to learn each other’s embedding spaces. But, this additional flexi-
bility did not help improve the recall values (not reported in this
manuscript).

The measured latency (95% percentile) in CPU was ~ 50 msec/query
and in GPU (NVIDIA V100) ~ 20 msec/query.

4.4.2 KV Retrieval. For the key-value retrieval task, we experi-
mented with different answer encoding schemes: (1) Key-value-
header concatenation (2) key-value concatenation without header
(3) key embedding vector concatenated with value embedding vec-
tor (4) value-only embedding vector. In these variations, we kept
the query encoder as bi-LSTM. Among these experiments, the best
performing one was (1). The metrics for (2) and (3) were very similar
to (1) and we decided on (1) as it is expected to have the additional
information from the header texts. The model performance metrics
are reported in Table 2. (1) and (4) are reported in the last and
middle columns respectively.

KV retrieval had a similar requirement on latency as the RPD
retrieval task. The measured latency (95% percentile) in CPU was
~ 50 msec/query and in GPU (NVIDIA V100) ~ 20 msec/query.

5 CONCLUSION AND FUTURE WORK

In this paper, we explored supervised passage retrieval models with
the bi-encoder architecture which have been deployed for mobile
phones and fashion products. The retrieval models have a high recall
& low latency, and are being used in production at scale. Here, we
experimented with different bi-encoder architectures and show that
simple architectures can achieve high performance for downstream

Deep Passage Retrieval in E-Commerce

tasks. These bi-encoder models are also sample-efficient and can be
trained very quickly making it suitable for e-commerce use cases.
As we expand Decision Assistant towards millions of products other
than mobile phones and fashion products, the retrieval models that
we discussed here will play an even bigger role in the retrieval tasks
and we look forward to developing them further by minimizing
model supervision and using new data sources like user-generated
content.

REFERENCES

[1] Janarthanan Balakrishnan and Yogesh K Dwivedi. 2021. Conversational com-
merce: Entering the next stage of Al-powered digital assistants. Annals of Opera-
tions Research (2021), 1-35.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017.

Enriching word vectors with subword information. Transactions of the association

for computational linguistics 5 (2017), 135-146.

[3] Dangi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. 2017. Reading
wikipedia to answer open-domain questions. arXiv preprint arXiv:1704.00051
(2017).

[4] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and
Richard Harshman. 1990. Indexing by latent semantic analysis. Journal of the
American society for information science 41, 6 (1990), 391-407.

[5] Mihail Eric and Christopher D Manning. 2017. Key-value retrieval networks for
task-oriented dialogue. arXiv preprint arXiv:1705.05414 (2017).

[6] Daniel Gillick, Alessandro Presta, and Gaurav Singh Tomar. 2018. End-to-end
retrieval in continuous space. arXiv preprint arXiv:1811.08008 (2018).

[7] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning deep structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM international conference on
Information & Knowledge Management. 2333-2338.

[8] Karen Sparck Jones. 1972. A statistical interpretation of term specificity and its

application in retrieval. Journal of documentation (1972).

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey

Edunov, Dangi Chen, and Wen-tau Yih. 2020. Dense passage retrieval for open-

domain question answering. arXiv preprint arXiv:2004.04906 (2020).

[2

[

[9

=

WWW ’23 Companion, April 30-May 4, 2023, Austin, TX, USA

Yi Luan, Jacob Eisenstein, Kristina Toutanova, and Michael Collins. 2021. Sparse,
dense, and attentional representations for text retrieval. Transactions of the
Association for Computational Linguistics 9 (2021), 329-345.

Anirban Majumder, Abhay Pande, Kondalarao Vonteru, Abhishek Gangwar,
Subhadeep Maji, Pankaj Bhatia, and Pawan Goyal. 2018. Automated assistance
in e-commerce: An approach based on category-sensitive retrieval. In European
Conference on Information Retrieval. Springer, 604-610.

Helen McBreen. 2002. Embodied conversational agents in e-commerce applica-
tions. In Socially Intelligent Agents. Springer, 267-274.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bor-
des, and Jason Weston. 2016. Key-value memory networks for directly reading
documents. arXiv:1606.03126 [cs.CL]

Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage Re-ranking with BERT.
arXiv preprint arXiv:1901.04085 (2019).

Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao, Xiaodong He, Jianshu Chen,
Xinying Song, and Rabab Ward. 2016. Deep sentence embedding using long
short-term memory networks: Analysis and application to information retrieval.
IEEE/ACM Transactions on Audio, Speech, and Language Processing 24, 4 (2016),
694-707.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings
using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019).

Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-Beaulieu,
Mike Gatford, et al. 1995. Okapi at TREC-3. Nist Special Publication Sp 109 (1995),
109.

Gerard Salton and Christopher Buckley. 1988. Term-weighting approaches in
automatic text retrieval. Information processing & management 24, 5 (1988),
513-523.

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
Learning semantic representations using convolutional neural networks for web
search. In Proceedings of the 23rd international conference on world wide web.
373-374.

Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh Nallapati, and Bing Xiang. 2019.
Multi-passage bert: A globally normalized bert model for open-domain question
answering. arXiv preprint arXiv:1908.08167 (2019).

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen Tan, Kun Xiong, Ming
Li, and Jimmy Lin. 2019. End-to-end open-domain question answering with
bertserini. arXiv preprint arXiv:1902.01718 (2019).

https://arxiv.org/abs/1606.03126

	Abstract
	1 Introduction
	2 Related Work
	2.1 Passage retrieval
	2.2 Key-Value retrieval

	3 Methods
	3.1 RPD Retrieval
	3.2 Key-Value Retrieval

	4 Experiments and Results
	4.1 Data sets used
	4.2 Baseline Setup
	4.3 Evaluation Metrics
	4.4 Results

	5 Conclusion and future work
	References

