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ABSTRACT
Wehave developed a conversational assistant called the DecisionAs-
sistant (DA) to help customers make purchase decisions. To answer
customer queries successfully, we use a question and answering
(QnA) system that retrieves data on product pages and extracts
answers. With various data sources available on the product pages,
we deal with unique challenges such as different terminologies and
data formats for successful answer retrieval. In this paper, we pro-
pose two different bi-encoder architectures for retrieving data from
each of the two data sources considered – product descriptions
and specifications. The proposed architectures beat the baseline
approaches while maintaining a high recall and low latency in pro-
duction. We envision that the proposed approaches can be widely
applicable to other e-commerce QnA systems.
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1 INTRODUCTION
Conversational assistants have become ubiquitous in recent years
[1, 11, 12]. In e-commerce, they can help the customer discover
products, make a purchase decision, and offer customer support. On
our online e-commerce marketplace, we have built a conversational
assistant called Decision Assistant (DA) with the goal of helping
the customer make the purchase decision similar to an in-person
sales assistant in a store.

DA is available on our product pages to answer any product-
related query, ranging from questions on product specifications
like "What is the battery capacity of this mobile?" to offers and
discounts, exchanges, or warranties. DA is available for mobile and
fashion verticals in its current iteration. In particular, to answer
product-specific questions, two main sources of data are used —
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product descriptions (called Rich Product Descriptions; RPDs) and
product specification key-value stores (KVs). This data is usually
provided by product vendors and is considered the most reliable
data source at hand. If we are not able to find an answer in RPDs
and KVs, we fall back to user-generated content such as reviews.

We approach this question and answering (QnA) task by taking
a retriever and reader approach. The first step is the contextual
retriever where we select relevant passages which might contain
an answer, given RPDs and KVs. The second step is the reader or
the question answering step which identifies answer spans given
the subset of passages retrieved by the retriever.

The key challenge around this retrieval task is that the termi-
nology used in the questions and the relevant answers are often
significantly different; for example,

Q: "How long can the phone last?"
A: "6000 mAh battery that offers a standby time of up to 57 days."

Q: "What is the resolution of the screen?"
A: "1520x720 Pixels".

Another challenge lies in the nature of different data formats
and contents of RPDs and KVs. RPDs mainly consist of descriptive
paragraphs of product features while KV stores contain product
specifications as key-value pairs. This difference in the data formats
and contents give rise to its own set of challenges in the retrieval
task.We propose two differentmodel architectures that are uniquely
suited for each data source to tackle this challenge.

The rest of the paper is organized as follows: Section 2 contains
related work and section 3 discusses the methods we used for the re-
triever. Section 4 addresses experiments and results. Finally, section
5 contains the conclusion and future work.

2 RELATEDWORK
2.1 Passage retrieval
Earlier work on passage retrieval represented documents and queries
as sparse vectors, with each dimension corresponding to a term.
TF-IDF [8, 18] and BM25 [17] are the popular weighting schemes
widely used today. However, these approaches fail to capture the
contextual or semantic meaning of the query and documents. To
overcome this limitation, latent semantic analysis was proposed by
representing documents with low-dimension dense vectors [4].

With the advent of deep learning, mainly two different mod-
eling approaches became popular for retrieval – bi-encoder (or
dual encoder) and cross-encoder. [7] proposed bi-encoder with an
embedding-based bag-of-words model where queries and docu-
ments were embedded independently, later extended by [15, 19].
Documents are ranked based on their cosine similarity with the
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query. However, bi-encoder approaches show limitations in cap-
turing fine-grained interactions between the query and documents.
To overcome this, [14] and [21] proposed a cross-encoder approach
where the query and documents are jointly embedded.

Earlier retrieval systems often took two-step approaches [14, 20]:
(1) traditional retrieval based on sparse vector representations [3]
and (2) re-ranking based on neural systems [6, 16]. [9] introduced
the dense passage retrieval (DPR) which uses low dimensional dense
vector embeddings and approximate nearest neighbors to retrieve
and rank documents. It’s a seminal paper in the field and proposes
an efficient technique for training bi-encoders, of which the concept
is applied to our batch sampling strategies. For a detailed empirical
study on sparse and dense information retrieval systems, please
refer to [10].

2.2 Key-Value retrieval
Apart from documents, the retrieval systems can also use knowl-
edge bases (KBs) as their data source. Specifically, [5] proposed
key-value retrieval networks for task-oriented dialogue, and [13]
proposed key-value memory networks for directly reading both
documents and KBs. Our KV task falls in between KB and docu-
ments in that both questions and answers can contain either or
even both keys and values; for example, "What is the ram size?",
"Does this phone come with 2GB ram?", "2GB?". Thus, the various
techniques mentioned in this and the previous sections are applica-
ble. Here, the unit of data changes from paragraphs to key-value
pairs although the number of tokens in KV pairs is significantly
shorter than RPD. In this paper, we use a bi-encoder model for the
KV retrieval with keys and values concatenated as the "document".

3 METHODS
3.1 RPD Retrieval
3.1.1 Model Architecture. We implemented a bi-encoder model
with two independent encoder branches [9, 13] (refer to Figure 1).
Here, in each branch the fastText-based sentence embedding vectors
were feed-forwarded and concatenated with the bi-LSTM sentence
embedding vectors. This feed-forward structure helped increase the
model performance compared to the baselines as shown in Table 1.

3.1.2 Model Description. During the model training, relevance
probabilities between a query and a set of candidate answers are
computed by

𝑝𝑝𝑝 = softmax(𝑞 ·𝐴𝐴𝐴𝑇 ) . (1)

Here, 𝑞 is a query embedding obtained from the query branch and
𝐴𝐴𝐴 embedding matrix with 𝑑 × 𝐷 dimensions for answer candidates
obtained from the answer branch, with 𝑑 being the dimension of a
batch of answer candidates and 𝐷 the embedding vector dimension.
𝑝𝑝𝑝 is compared with ground truth labels (𝑦𝑦𝑦) and the cross-entropy
loss is computed based on 𝑝𝑝𝑝 and𝑦𝑦𝑦. Please note that the embedding
from each branch is the concatenation of the fastText and bi-LSTM
sentence embedding vectors and thus its dimension 𝐷 is the sum
of both embedding vector dimensions. The underlying assumption
in the softmax is that there is only one relevant paragraph within
each training batch of size 𝑑 . In the next section, we describe in
detail how we ensured this assumption in the batch sampling.

Figure 1: Model architecture for the RPD retrieval: a bi-
encoder with two independent encoder branches was used.
For both the branches, each text input was split into tokens,
converted into fastText word embedding vectors, and used as
input for bi-LSTM. The output of the bi-LSTM was concate-
nated with the fastText sentence embedding – an embedding
vector averaged over the fastText word embedding vectors
of all the sentence words.

During inference, when a user types in a query in DA, a set
of RPDs from a product page where the user is on are treated as
answer candidates (Figure 2). The user query serves as input to the
query branch and the RPDs as input to the answer branch return-
ing query and answer embedding vectors respectively. The inner
product between the query and each answer embedding vector is
computed and the paragraphs corresponding to top-𝑘 inner prod-
ucts are selected as output. Here, the main task is to retrieve the
most relevant paragraphs with high recall.

3.1.3 Batch Sampling During Training. During the model training,
each batch of size 𝑑 (= number of user queries) is prepared by ran-
domly selecting 𝑑 queries from the train data set which have unique
intents, i.e., no duplicate-intent queries. In this way, we made sure
that there is only one positive pair existing in each batch when
paired with all the answers available within each batch. For exam-
ple, the first query in Fig. 3 is related to the finger_print_unlock
intent while all the other queries are to different intents and the
same logic holds for all the other queries. Thus, this way of nega-
tive sampling strategies will guarantee one positive sample in our
Softmax computation [6, 9]. The loss function for each batch was
computed by using the following relevance probabilities:

𝑝𝑝𝑝 = softmax(𝑞𝑞𝑞 ·𝐴𝐴𝐴𝑇 ) (2)
where𝑝𝑝𝑝 is a 𝑑×𝑑 matrix,𝑞𝑞𝑞 is a 𝑑×𝐷 matrix, and𝐴𝐴𝐴 is a 𝑑×𝐷 matrix.
The softmax function is applied to each row of 𝑞𝑞𝑞 ·𝐴𝐴𝐴𝑇 . In this way,
we efficiently computed the loss function with full vectorization.
For the intent annotation, we used our in-house intent prediction
model.

3.2 Key-Value Retrieval
3.2.1 Model Architecture. We took a supervised learning approach
and have done multiple experiments with different model archi-
tectures/weighting schemes and the final one showing the best
performance was a bi-encoder with a bi-LSTM query branch and
fastText simple-average answer branch (Fig. 4 and Table 2).

3.2.2 Model Description. During the model training, relevance
probabilities between a query and a set of candidate answers (here,
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Figure 2: Inference pipeline for the RPD retrieval

Figure 3: RPD train batch example: For each user query, we
ensure that there is one positive answer (paragraph) and
𝑑 − 1 negative answers by pulling unique intent queries, i.e.,
duplicate intents are not allowed within each batch.

Figure 4: Model architecture for the KV retrieval: A user
query and a set of key-value pairs are processed by the query
and answer branches, respectively. Both the user query and
each of the key-value pairs (key and value are concatenated)
are tokenized and converted into fastText word embedding
vectors. The word embedding vector for the query is pro-
cessed by the bi-LSTM encoder, while that for the key-value
pair is simply averaged over the tokens.

key-value pairs) were computed by Eq. 1. Please note that the crucial
difference from the RPD model is that only the query branch is
trained (supervised learning) but the answer branch is not. Since the
input to the answer branch is a set of key-value pairs comprising a
few words, bi-LSTM is unnecessary. Thus the answer embedding
is computed by averaging the fastText embedding vectors of each
key and value word along with other features such as the header
of the KV table. The cross-entropy loss function is computed in

exactly the same way as the RPD case. During back-propagation,
the model weights in the query branch are adjusted so that the
query embedding vectors become similar/dissimilar to the answer
embedding vectors for the positive/negative pairs (refer to Fig. 4).

During inference, a set of key-value pairs from KV on a user-
landing product page are treated as answer candidates, which are
taken as input to the answer branch, returning answer embedding
vectors. The inner product between the query and each answer em-
bedding vector is computed and the key-value pairs corresponding
to top-𝑘 inner products are selected as output.

3.2.3 Batch Sampling During Training. We took a different batch
sampling approach for KV; for a given pair of (product_id, query),
we assumed that there is only one relevant key-value pair in the
product specification table of the product_id, and assumed all the
other key-value pairs as negative. Considering there are typically
100 keys per product_id, this sampling strategy provided a large
number of negative samples with many variations of key-value
pairs. Thus, the product specification intents were not utilized
for the sampling strategy for this KV retrieval. For each batch, 64
(product_id, query) pairs were considered.

4 EXPERIMENTS AND RESULTS
4.1 Data sets used
The data used for training all models (for both RPD and KV re-
trieval tasks) was refactored from the labeled set prepared for the
downstream reader steps: span-based QnA. Since we know where
an answer to a specific question is we could also easily extract the
ground truth paragraphs where the answer lies in.

For both the RPD and KV retrieval tasks, the data sets were then
split into training and validation sets while keeping the products
unique in each set. This was done to prevent any feature leak and
to ascertain the model was not trained on the same context (RPDs
and KVs) that also exists in the validation data set. We reserved 4
product_id’s as a test data set, which includes 347 (77 + 92 + 83 +
95) labeled question-answer pairs for RPD retrieval and 789 labeled
question-answer pairs for KV retrieval. While the size of the test
data set seems low, we ensured enough diversity in the labeled
question-answer pairs.

For the RPD retrieval task, this exercise resulted in about 2000
samples in training and about 400 records in the validation set.
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Requiring more data to train the model, the training set was aug-
mented using paraphrasing and synthetic question generation. Af-
ter the augmentation, the final training set size became around
13,500 records.

For the key-value retrieval task, our labeled data set consists of
3,277 records for training and 782 records for validation. We did not
deploy augmentation techniques for this task; we had more data to
start with and the task is somewhat more relaxed (𝑘 is higher in
this case) and sample efficient.

4.2 Baseline Setup
4.2.1 RPD Retrieval. As a baseline model, we implemented a sparse
vector approach based on the BM25 algorithm [17] using Elastic-
Search. We indexed RPD paragraphs for all product_id’s in Elas-
ticSearch and used its BM25 implementation to retrieve relevant
RPDs given a user query. As a baseline for the dense vector ap-
proach, an unsupervised bi-encoder based on fastText embeddings
[2] was used. In each encoder, we averaged fastText word embed-
ding vectors weighted by TF-IDF [8, 18] scores for both a user
query and candidate RPDs and rank the cosine similarity scores.
The fastText model is trained with user-generated content (such
as user reviews and FAQs), product catalog, and human-agent chat
data. Further, we had a third model where we used a pre-trained bi-
encoder RoBERTa sentence transformer[16] to encode user queries
and RPDs. These models showed limited performance when user
queries are significantly different from the corresponding answers
in terminology.

A high-level requirement of the task was that it needed to be fast
enough to not overload the end-to-end pipeline. Thus, we explored
simpler models using the LSTM architecture and did not explore
the transformer models further.

4.2.2 KV Retrieval. For this retrieval task, we used an unsupervised
bi-encoder model as well similar to the one mentioned above albeit
with a small difference. Specifically, the query embedding is con-
structed by averaging fastText word embedding vectors weighted
by TF-IDF scores [8, 18], while the answer embedding by taking
a simple average over the fastText word embedding vectors (bi-
encoder (fastText) in Table 2). This unsupervised model showed
limited performance since the embedding vector spaces for user
queries and their answers can be significantly different from each
other.

4.3 Evaluation Metrics
For both the retrieval tasks, performance was measured by Recall @
top 𝑘 which considers a prediction as a success if the ground truth
RPD passage or KV pair is retrieved in the top 𝑘 . For RPD retrieval,
we decided 𝑘 = 3 for maximal recall because 𝑘 = 4 and higher
can make the retrieved texts too long to deal with the downstream
BERT-based QnA model, which extracts an answer span from the
retrieved paragraphs. On a similar note, we decided on 𝑘 = 20 for
KV retrieval.

4.4 Results
4.4.1 RPD Retrieval. Table 1 shows the bi-encoder models with the
fastText-embedding feed-forward loop provide better recall than
the one without feed-forward.

% Roberta- Elastic- bi-encoder bi-encoder bi-encoder
STS search (fastText) (bi-LSTM) (bi-LSTM +

(BM25) feedforward)
Top@1 - - 76.37 89.34 87.32
Top@2 - - 88.76 94.81 96.25
Top@3 86.1 88.2 93.08 97.98 98.27
Top@4 - - 94.81 98.85 100

Table 1: RPD passage retrieval: Top 𝑘 recall for the baseline
models and two different bi-encoder models.

% bi-encoder bi-encoder bi-encoder
(fastText) (value-only) (key-value-header concat)

Top@1 60.17 65.90 70.60
Top@2 77.35 80.14 83.02
Top@3 85.71 86.69 89.23
Top@20 95.06 97.71 98.10

Table 2: Key-value retrieval: Top 𝑘 recall for a variation of
bi-encoder models. In bi-encoder (value-only and key-value-
header concat), a user query is processed by bi-LSTM and the
corresponding answer branch input with TF-IDF-weighted
average over fastText word embedding vectors.

We experimented with different relevance probabilities:

𝑝𝑝𝑝 = softmax[(𝑞ΦΦΦ) · (𝐴𝐴𝐴ΦΦΦ)𝑇 ] . (3)

where ΦΦΦ is a D × D matrix, transforming each query/answer can-
didate embedding vector leading to more flexibility for the model
to learn each other’s embedding spaces. But, this additional flexi-
bility did not help improve the recall values (not reported in this
manuscript).

Themeasured latency (95% percentile) in CPUwas∼ 50msec/query
and in GPU (NVIDIA V100) ∼ 20 msec/query.

4.4.2 KV Retrieval. For the key-value retrieval task, we experi-
mented with different answer encoding schemes: (1) Key-value-
header concatenation (2) key-value concatenation without header
(3) key embedding vector concatenated with value embedding vec-
tor (4) value-only embedding vector. In these variations, we kept
the query encoder as bi-LSTM. Among these experiments, the best
performing one was (1). The metrics for (2) and (3) were very similar
to (1) and we decided on (1) as it is expected to have the additional
information from the header texts. The model performance metrics
are reported in Table 2. (1) and (4) are reported in the last and
middle columns respectively.

KV retrieval had a similar requirement on latency as the RPD
retrieval task. The measured latency (95% percentile) in CPU was
∼ 50 msec/query and in GPU (NVIDIA V100) ∼ 20 msec/query.

5 CONCLUSION AND FUTUREWORK
In this paper, we explored supervised passage retrieval models with
the bi-encoder architecture which have been deployed for mobile
phones and fashion products. The retrievalmodels have a high recall
& low latency, and are being used in production at scale. Here, we
experimented with different bi-encoder architectures and show that
simple architectures can achieve high performance for downstream
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tasks. These bi-encoder models are also sample-efficient and can be
trained very quickly making it suitable for e-commerce use cases.
As we expand Decision Assistant towards millions of products other
than mobile phones and fashion products, the retrieval models that
we discussed here will play an even bigger role in the retrieval tasks
and we look forward to developing them further by minimizing
model supervision and using new data sources like user-generated
content.
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