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ABSTRACT
The main task of an e-commerce search engine is to semantically
match the user query to the product inventory and retrieve the most
relevant items that match the user’s intent. This task is not trivial
as often there can be a mismatch between the user’s intent and the
product inventory for various reasons, the most prevalent being: (i)
the buyers and sellers use different vocabularies, which leads to a
mismatch; (ii) the inventory doesn’t contain products that match
the user’s intent. To build a successful e-commerce platform it is
of paramount importance to be able to address both of these chal-
lenges. To do so, query rewriting approaches are used, which try to
bridge the semantic gap between the user’s intent and the available
product inventory. Such approaches use a combination of query
token dropping, replacement and expansion. In this work we intro-
duce a novel Knowledge Graph-enhanced neural query rewriting in
the e-commerce domain. We use a relationship-rich product Knowl-
edge Graph to infuse auxiliary knowledge in a transformer-based
query rewriting deep neural network. Experiments on two tasks,
query pruning and complete query rewriting, show that our pro-
posed approach significantly outperforms a baseline BERT-based
query rewriting solution.
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1 INTRODUCTION
Efficient and effective information retrieval is crucial for the success
of any e-commerce platform. The main task is to retrieve the most
relevant product listings among millions of listings that correctly
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match the user’s intent. However, often the user intent cannot
be directly matched to the product inventory, either caused by
semantic mismatch or missing inventory. This is the main cause
for customer churn and loss of revenue [Tan et al. 2017; Wang
et al. 2021]. To address these challenges, Query Rewriting (QR)
approaches are applied to reformulate the user query to increase the
number of matched product listings and retain the relevance of the
results with respect to the original user query. QR is of paramount
importance to retain users on the platform, and increase conversion
and click through rates even in the case of missing inventory.

In recent years, plethora of approaches for QR in e-commerce
have been proposed. Majority of approaches are using Seq2Seq
models to generate new query rewrites based on a source user query
[Qiu et al. 2021]. However, as shown by Zhang et al. [Zhang et al.
2022] many of the existing approaches fail to correctly understand
the shopping user intent, leading to sub-optimal query rewrites.

To address this challenge, we introduce a Knowledge Graph
(KG)-enhanced neural query rewriting approach. Such an approach
allows to perform full semantic understanding of the query, and
correctly identify the user intent, leading to high-quality query
rewrites. To do so, we are using a relationship-rich product KG,
generated frommillions of product listings in our inventory. The KG
is a weighted directed graph, which models entities and relations
describing product listings, e.g., brands, colors, materials, sizes etc.
Such a KG allows us to perform semantic understanding of a query
and correctly capture the user intent. We use a proprietary entity
linking approach [Zhou et al. 2021]. Once the entities are identified,
we can explore the graph to draw additional information about
each entity and analyze the relations to other entities in the graph.

For example, given the query “Kobe Bryant Leather Sneaker Size
10”, we first identify the query category in our inventory1, and we
pull the corresponding KG for that category, i.e., “Mens Athletic
Shoes”. As shown in Figure 1, we are able to link “Kobe Bryant”
to the corresponding entity of the type “Product Line", the token
“Leather” is linked to an entity of type “Material”, etc. Furthermore,
as our KG is built from our own inventory we are able to calculate
the frequency for each of these entities, which is a direct signal
of what is the maximal recall set we could expect for the given
user query. In this example, the result set of the query is limited
by the entity “product_line/kobe_bryant” to 136 product listings.
A simple solution to increase the result set is to rewrite the query
by either replacing or dropping this entity from the query. The KG
allows us to easily identify a replacement for the entity by exploring
the relations to other entities in the graph. For example, we can
replace the product line with its brand, “brand/nike”, or by the type
of the shoes “type/athletic_shoes”, or identify similar product line
entities, such as “product_line/lebron_james”. Such similar entities

1Query categorization is preformed using proprietary model and it is out of scope for
this work
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Figure 1: KG-based semantic query understanding.

could be identified by mining the relations in the graph, or using
entity embedding approaches. Using the KG we are able to quickly
generate many query rewrites, which retain the original user intent,
and significantly increase the number of retrieved product listings.

To systematically incorporate such structured knowledge at
scale, we enhance traditional query rewriting models by injecting
auxiliary vectors extracted from the product KG. First, we introduce
a KG-enhanced query pruning model, which performs only token
dropping for query rewriting, i.e., identify the tokens in the user
query with least importance and remove them in order to increase
the recall set. Second, we introduce a KG-enhanced encoder-decoder
model, which performs full query rewriting, by deleting, replacing
and/or inserting tokens. Both models are enhanced with entity
embedding vectors, generated from the product KG, entity types
retrieved from Named-Entity Recognition model, category informa-
tion, and entity frequency information. All these auxiliary vectors
provide direct signals to the query rewriting models what is the
best segment to be dropped or replaced, and what other segment
should be replaced with.

Our contribution can be summarized as follows:

• KG-enhanced query pruning model, which is an enhanced
version of a transformer-based token classification model
by injecting auxiliary information extracted from a Product
Knowledge Graph.

• KG-enhanced encoder-decoder complete query rewriting
model, which is an enhanced version of a transformer-based
encoder-decoder model by injecting auxiliary information
extracted from a Product Knowledge Graph.

The rest of this paper is structured as follows. In Section 2, we
give an overview of related work. In Section 3, we introduce our
approach for building a product knowledge graph and two query
rewriting approaches. In Section 4, we present in-depth evaluation

of our models. We conclude with a summary and an outlook on
future work.

2 RELATEDWORKS
Query reformulation has been implemented to bridge the vocab-
ulary mismatch in e-commerce search [Qiu et al. 2021] as well as
in question answering (QA) systems to handle ambiguity of the
follow-up questions by rewriting user query such that they can be
processed by existing QA models as standalone questions outside
of the conversation context [Vakulenko et al. 2021]. A subset of
these works rely on two-phase system. In the first phase, candidate
queries are generated using a combination of query token dropping,
replacement and expansion. In the second phase, the candidates
generated from the first phase are being ranked using a ranking
model. Some research show that dropping unimportant terms in
long queries [Chen and Zhang 2009; Tan et al. 2017] would be help-
ful to generate candidate queries. Other approaches include the
utilization and creation of search datasets [He et al. 2016; Xiao et al.
2019; Zhang et al. 2022], and part-of-speech prediction [Tan et al.
2017]. The ranking task in second phase utilises TF-IDF weight,
co-training [Xiao et al. 2019], and pre-trained language models [Lu
et al. 2021; Tan et al. 2017]. Another type of approaches for query
rewriting is end-to-end training using neural query generation
models. This has been proved efficient and effective to generate
query suggestion and rewritten queries, which usually leverages
beam search, with top-n sampling decoding stage. For instance,
sequence-to-sequence model for session-based query suggestion
incorporating copy mechanism in decoding stage shows promising
performance in generating query suggestions based on previous
queries of the session [Dehghani et al. 2017].

In context of e-commerce search engine, studies show that 50%
of the queries take part in a reformulation session and lead to a
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rise in both click and purchase rates for the last query [Hirsch et al.
2020]. Although query rewriting is a crucial part for e-commerce
search engine, rewriting involves many intrinsic difficulties, es-
pecially the lack of high quality query rewriting logs, contextual
information for the query. To overcome the scarcity of high quality
query rewriting logs in e-commerce search, end-to-end training of
neural machine translation model leverages query titles from user
click logs [Qiu et al. 2021] instead of query rewrite logs. Moreover,
several approaches has been proposed regarding query reformu-
lation in e-commerce search engine: enhancing query rewriting
using query annotation (NER tags) as contextual knowledge [Wang
et al. 2021], synonym dictionary [Mandal et al. 2019], entity tags,
Parts of Speech (POS) tags and user behavior mining for query
term dropping and replacement [Tan et al. 2017], contextual-term
weighting for recognising important term aligned with query intent
[Manchanda et al. 2019]. In voice search systems, retrieval based
query reformulation has been proved effective mitigating the errors
originating from Automatic Speech Recognition (ASR) system and
Natural Language Understanding (NLU) pipeline [Chen et al. 2020;
Yuan et al. [n.d.]].

Knowledge Graphs (KGs) constructed based on both input data
and beyond the input query can be used to enhance text gener-
ation system like question answering, document summarisation,
commonsense reasoning, and creative writing [Fan et al. 2019].
Incorporating KGs to generate answers with grounded facts in
end-to-end diallog systems has been picked up in recent years. KG-
copy [Chaudhuri et al. 2019] mechanism, a model that learns KG
embeddings per dialog instead of globally, has shown promising
performance both in goal and non-goal oriented dialog genera-
tion task producing knowledge grounded responses compared to
the other memory network based encoder-decoder model and KG
based generative models [Kassawat et al. 2019; Madotto et al. 2018].
A followup work [Chaudhuri et al. 2021] of KG-copy mechanism
[Chaudhuri et al. 2019] leveraging the KG entities and relations
along with pre-trained transformers outperformed the previous KG
incorporated models [Chaudhuri et al. 2019; Madotto et al. 2018] in
goal and non-goal oriented dialog generation in most automated
and human generated metrics. In context of query rewriting, user
interaction graph by mining their queries and learning query em-
beddings by leveraging the Graph Representation Learning has
given performance boost in query rewriting over retrieval based
systems [Yuan et al. [n.d.]]. A pre-trained model called Geo-BERT
[Liu et al. 2021], combining geographic granularity knowledge
graph of point of interests (POIs) with textual semantics shows
strong performance in QR task for search in map service.

To the best of our knowledge, there is no end-to-end approach
that is backed by a rich Product Knowledge Graph to perform query
rewrites in the e-commerce domain. Our approach differs from the
above methods in that we train transformer based query pruning
and query rewriting models, which are capable of leveraging entity
embeddings from industrial scale structured product knowledge
graph.

3 METHODOLOGY
In this section, we present a KG-enhanced neural query reformula-
tion framework that aims to provide a query-to-query reformulation
solution by integrating auxiliary vectors extracted from domain
knowledge. We present two solutions: (i) KG-enhanced query prun-
ing model, and (ii) KG-enhanced Encoder-Decoder model for full
query rewrites.

3.1 Problem Definition
Query rewriting is the process of modifying a source query con-
sisting of n tokens 𝑞𝑠 = {𝑤𝑠1,𝑤𝑠2, ..,𝑤𝑠𝑛}, with result set recall
𝑟𝑠 and result set relevance 𝑟𝑒𝑙𝑠 , to a target query consisting of𝑚
tokens 𝑞𝑡 = {𝑤𝑡1,𝑤𝑡2, ..,𝑤𝑡𝑚}, with result set recall 𝑟𝑡 and result
set relevance 𝑟𝑒𝑙𝑡 with respect to the source query, where the recall
of the target query 𝑟𝑡 is greater than the recall of the source query
𝑟𝑠 , and the relevance of the target query result set 𝑟𝑒𝑙𝑡 is greater
or lower, within acceptable threshold, than the relevance of the
original query result set.

3.2 Product Knowledge Graph
External knowledge bases contain a plethora of cross-domain data
which is highly precise, but lack coverage for specific e-commerce
applications. To address this issue, an approach that leverages inven-
tory data is employed. Most e-commerce platforms have rich data
from sellers, such as item titles, descriptions, images, and aspect-
value pairs. In this work, we use a product Knowledge Graph con-
sisting of entities and relationships between them to model product
inventory. The KG is mined from millions of product listings based
on co-occurring aspect-value pairs in product listings, resulting
in a directed weighted graph. More precisely, we generate a node
in the graph for each aspect-value pair that occurs in product list-
ings above a user specified threshold. To set the edge weights, for
each co-occurring pair of aspect-value pair in at least one product
listing, a normalized co-occurrence frequency is calculated. The
co-occurrence frequency is normalized by the occurrence of both
nodes in each direction, resulting in directed weights. Such weights
give higher relevance to aspect-value pairs that co-occur more often
together, normalized by their global popularity. For example, for
the co-occurring aspect-values Brand:Apple and Color:Sierra Blue,
we will generate the following edges in the graph:

Brand:apple p:color Color:sierra_blue 0.01

Color:sierra_blue p:brand Brand:apple 0.99

The fourth element is the weight of the edge, and in this case
indicates that the color Sierra Blue is almost fully conditioned on
the brand Apple, while the other direction is not significant.

To ease the use of such KG in downstream tasks, we use the
approach of biased walks to embed all entities and relations. Using
RDF2vec [Ristoski and Paulheim 2016], we perform biased walks
on the weighted graph to flatten the graph in sequences that can
later be embedded by any of the existing language models. This
imparts a locality as well as some global contextual information to
the nodes across the graph. This approach is able to capture the
neighborhood of each entity in a single vector, which then can be



ISIR-eCom 2023, May 01, 2023, Austin, TX Ristoski, et al.

Figure 2: KG-enhanced query pruning model, with example input query “off white shirt virgil”, labeling tokens “off” and
“white” to be dropped.

used for similarity calculation or context inference. Such embed-
dings can then be ingested in various machine learning models to
solve a variety of downstream tasks, in this case query rewriting.

3.3 KG-Enhanced Query Pruning Model
The objective of the KG-enhanced query pruning model is to iden-
tify and remove the tokens in the source query, which are least
relevant and are causing low recall set. We define the task as a
token-classification task, where each token in the source query is
either kept or dropped. The KG-enhanced query pruning model is
based on a standard BERT transformer token classification model,
augmented with 4 additional inputs for each token: (i) NER vector
N ; (ii) KG n-dimensional entity embedding vectorsK, which embeds
the entity semantics. For multi-token entities, we assign the same
entity vector to all tokens; (iii) category vector C of dimension 1,
referring to the query category, and provides the category context
for query rewriting; (iv) frequency vectors F of dimension 1 which
refers to the frequency of each entity in the inventory and is a good
indicator of the recall of an item in the inventory. The architecture
of the KG-enhanced query pruning model is depicted in Figure 2.

Following the work on integrating keyword annotation with
transformer embedding layer [Wang et al. 2021], we inject the NER
vector in our BERT-encoder embedding layer, i.e., concatenating
NER embedding with the token and positional embedding vectors,
resulting in vector𝑋𝑖 , 𝑖 = 1, 2, ..., , 𝑛, where𝑛 is the number of tokens
in input query.

To be able to aggregate the rest of the entity auxiliary vectors
with the BERT encoded vectors, we learn a transformation to project
the vectors in the BERT vector space, following the approach pre-
sented in [Faldu et al. 2021].More precisely, given an entity auxiliary
vector, we train a two layer feed-forward network, using ReLU and
TanH activation functions. The transformation functions for the

entity auxiliary vectors are:

𝑦𝑥_𝑎𝑢𝑥 = 𝑇𝑎𝑛𝐻 (𝑊 2
𝐸 ∗ 𝑅𝑒𝐿𝑈 (𝑊 1

𝐸 ∗ 𝑥𝑎𝑢𝑥 )) (1)

where𝑊 1
𝐸
and𝑊 2

𝐸
are trainable weights for transforming the aux-

iliary entity vector. We apply the same transformation for all three
auxiliary vectors, KG entity embedding K, category vector C, and
the frequency vector F, which is normalized for each batch. The final
token vector for token 𝑡𝑛 and BERT vector X is the concatenation
of all the vectors together:

𝑋𝑛 = 𝑋𝑛 ⊕ 𝐾𝑛 ⊕ 𝐶𝑛 ⊕ 𝐹𝑛 (2)

The concatenated vector is fed into the token classification layer
which is trained to predict the label keep or drop of each token. To
train the model we label all tokens that are missing in the target
user query as positive, i.e., labeled as drop.

3.4 KG-Enhanced Encoder-Decoder Query
Rewriting Model

We introduce a KG-enhanced encoder-decoder architecture for com-
plete query reformulation, including token dropping, replacement
and insertion. The encoder model encodes an input sequence in
a single vector, which is then passed to the decoder and used for
generating new sequence conditioned on the input encoded vector.
To train the model, we use the source query 𝑞𝑠 on the input, and
the target query 𝑞𝑡 on the output, where the objective is to recreate
the target query.

The model is based on the standard transformer-based encoder-
decoder architecture [Rothe et al. 2020], extended with KG auxiliary
vectors, as shown in Figure 3.

The embedding layer of the encoder block is coupled with the
NER tags as explained in Section 3.3. Similarly as in the query prun-
ing model, the encoder block takes the encoded representation of
the category vector C, the frequency vector F, the KG embeddings
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Figure 3: KG-enhanced encoder-decoder query rewriting model

vector K and concatenates them with the BERT encoded represen-
tation of each token. The conditional probability of entire target
vector sequence by the decoder can be represented as follows:

𝑝𝜃𝑑𝑒𝑐 (𝑌1:𝑚 |𝑋1:𝑛) =
𝑚∏
𝑖=1

𝑝𝜃𝑑𝑒𝑐 (𝑦𝑖 |𝑌0:𝑖−1, 𝑋 )

𝑋 = 𝑋 ⊕ 𝐾 ⊕ 𝐶 ⊕ 𝐹
(3)

After the model is trained, we use beam search to generate the
top-N most probable target queries, conditioned on the encoded
vector.

4 EXPERIMENTS
We evaluate both KG-enhanced models on 2 datasets, and compare
the results to their baseline counterparts.

4.1 Datasets
We compile the datasets from user search logs from eBay Inc.,
one of the biggest e-Commerce platforms in the US. The datasets
consist of source and target user query pairs. To identify such query
pairs, we track user sessions in which a user first issued a query,
the source query 𝑞𝑠 , which matched less than 100 results, and the
user didn’t click on any item, then within the same session the
user reformulated the query, the reformulated query 𝑞𝑡 , and then
clicked and/or purchased some of the results. Furthermore, we
apply the following filters to improve the quality of the query pairs;
(i) queries must be between 2 and 25 tokens; (ii) The token-based
Jaccard distance between 𝑞𝑠 and 𝑞𝑡 must be above 20%, to ensure
that the user retains the same shopping intent; (iii) The edit distance
between 𝑞𝑠 and 𝑞𝑡 must be above 5, in order to avoid typographical
error fixes;2 (iv) The recall of 𝑞𝑡 must be larger than the recall of
𝑞𝑠 ; (v) Both queries must belong to the same category; (vi) The
user must engage with the result set of the target query, by either
clicking or purchasing an item. For the query pruning model, we
make sure that the target query is subsequence of the source query,
where all the missing tokens are labeled as the positive class. For the
encoder-decoder model, we allow token deletions, insertions and
replacements.We generated 2 datasets for the task of query pruning,
and 2 datasets for the task of full query rewriting. All datasets are

2Spelling mistakes are handled by a separate proprietary spelling correction model.

Table 1: Datasets statistics.

Dataset Training Test Validation
𝑄𝑢𝑒𝑟𝑦 𝑃𝑟𝑢𝑛𝑖𝑛𝑔𝑠𝑚𝑎𝑙𝑙 562,053 43,715 16,389
𝑄𝑢𝑒𝑟𝑦 𝑃𝑟𝑢𝑛𝑖𝑛𝑔𝑙𝑎𝑟𝑔𝑒 2,863,026 222,679 95,434
𝑄𝑢𝑒𝑟𝑦 𝑅𝑒𝑤𝑟𝑖𝑡𝑒𝑠𝑚𝑎𝑙𝑙 511,768 39,804 17,060
𝑄𝑢𝑒𝑟𝑦 𝑅𝑒𝑤𝑟𝑖𝑡𝑒𝑙𝑎𝑟𝑔𝑒 1,038,088 80,740 34,604

generated from different time periods in the year 2022. The datasets
have different sizes to analyze if users searching patterns change
over time, and how well the models can adapt to those changes.
The datasets statistics are shown in Table 1.

The KG used in the experiments is built on top of around 50, 000
categories of product listings, and contains tens of millions of nodes
and edges.3 To link the queries to the KG we use proprietary entity
linking pipeline [Zhou et al. 2021]. The KG entity embeddings
are trained using RDF2vec [Ristoski and Paulheim 2016], resulting
in 100-dimensional entity embedding vectors. The NER tags are
obtained from a proprietary NER model, which is part of the entity
linking pipeline and is able to identify hundreds of named entity
types and annotate them using BIOES tagging format [Zhou et al.
2021].

4.2 Evaluation Setup
Both the KG-enhanced query pruning and encoder-decoder model
use a proprietary pre-trained BERT encoder model trained on sev-
eral billion product titles from our inventory, user queries and
public text corpora. We compare the KG-enhanced query pruning
model to a baseline transformer-based token-based classifier using
the same BERT encoder. Both models are trained for 5 epochs, and
we tune the class weight in order to address the class imbalance
between kept and dropped tokens, i.e., the dropped tokens are as-
signed higher weight, which is directly used in the loss function.
We report Precision, Recall and F-score, and query accuracy, which
measures how many of the predictions have exact overlap with the
user target query. We perform the Wilcoxon signed-rank test to
identify if there is statistical significant difference between the re-
sults of the baseline approach and our proposed approach [Demšar

3Exact statistics are company’s proprietary information.
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Table 2: Query Accuracy, Precision, Recall and F-Score results, for the baseline BERT model, and the KG-enhanced model, on
the small and large Query Pruning datasets. * indicates a statistical significant increase over the baseline, for a confidence level
𝑝 < 0.01.

Model Query Accuracy Precision Recall F-Score
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑠𝑚𝑎𝑙𝑙 54.02% 66.21% 67.53% 68.36%
𝐾𝐺 − 𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑𝑠𝑚𝑎𝑙𝑙 55.43%* 70.35%* 69.59%* 69.97%*
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑙𝑎𝑟𝑔𝑒 44.00% 61.81% 59.27% 60.51%
𝐾𝐺 − 𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑𝑙𝑎𝑟𝑔𝑒 46.26%* 62.50%* 61.67%* 62.09%*

Table 3: Recall@5, Jaccard@5 and BLEU@5 results, for the
baseline BERT model, and the KG-enhanced model, on the
small and large Token Replacement datasets.

Model Recall@5 Jaccard@5 BLEU@5
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑠𝑚𝑎𝑙𝑙 3.03% 43.82% 35.76%
𝐾𝐺 − 𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑𝑠𝑚𝑎𝑙𝑙 3.32% 44.19% 36.25%
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑙𝑎𝑟𝑔𝑒 1.60% 42.13% 34.95%
𝐾𝐺 − 𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑𝑙𝑎𝑟𝑔𝑒 1.79% 43.70% 35.51%

Table 4: Query result set recall and relevance mean values,
for the the source user query, target user query, the baseline
model, and the KG-enhanced model. * indicates a statistical
significant increase over the baseline, for a confidence level
𝑝 < 0.01.

Model Recall Mean Recall Median Rel. Mean
Source User Query 25.3 22 /
Target User Query 147.4 148 0.628
Baseline 225,227.3 37 0.543
KG-enhanced 225,430.5* 105 0.564*

2006]. We reject the null hypothesis if the results are the same for
a confidence level 𝑝 < 0.01.

The KG-enhanced encoder-decoder model is compared to a
baseline encoder-decoder model using the same pre-trained en-
coder/decoder BERT model as before. Both models are trained for 5
epochs. We use beam search to generate the top-5 rewritten queries.
Following the evaluation setup in [Wang et al. 2021] we use the
following evaluation metrics to evaluate the encoder-decoder query
rewriting model: (i) Recall@5: the proportion of test query pairs
where the target query matches exactly (sentence-level) one of
the top 5 predicted candidate queries by the model. (ii) Jaccard@5:
quantifies the highest Jacard (token-level) query similarity (order
agnostic) between the top-5 predicted candidates and the target
query. (iii) BLEU@5: The highest BLEU score between the top-5
predicted candidates and the target query.

4.3 Results
Table 2 shows the results for the Query Pruning task, using the
KG-enhanced model and the baseline token-based classification
model on two datasets. We can observe that the KG-enhanced
query pruning significantly outperforms the baseline model on
both datasets.

The evaluation results for the full query rewriting models on two
datasets are shown in Table 3. The KG-enhancedmodel outperforms
the baseline model on all the evaluation metrics. However, we can
observe that the difference is marginal. We have to note that a
query rewriting model can potentially produce N valid rewrites for
a source query 𝑞𝑠 , which don’t necessarily match the user target
query. For example, the source query “Kobe Bryant size 10”, which
the user reformulated to Lebron James size 10, could also be correctly
rewritten to “Nike shoes size 10” or “Kyrie Irving size 10”.

To get better insights of the quality of the query rewrites of both
models, we compare the source and rewritten queries result set
recall and relevance on our whole product inventory. To do so, we
selected 5, 000 random queries from the dataset, for which we run
the source query and the predicted queries by the KG-enhanced and
baseline encoder-decoder model in our search engine and we com-
pare the recall, and the relevance of the retrieved result set using
proprietary item-to-query relevance model. In Figure 4 are shown
the recall distributions of the user target query, the baseline and KG-
enhanced encoder-decoder models top-1 predicted query. Visually,
we can confirm that the KG rewrites produce higher recall compared
to the baseline. Compared to the user rewrites, we can observe that
the KG produces much longer tail, leading to significantly higher
mean recall. In Figure 5 are shown the relevance distributions of the
user target query, the baseline and KG-enhanced encoder-decoder
models. As expected, the user target query produces results with
highest relevance, followed by the KG-based rewrites. To statisti-
cally compare the Recall and Relevance distributions of the baseline
and KG-enhanced models, we perform Welch’s unequal variances
t-test, for a confidence level 𝑝 < 0.01. The results are shown in
Table 4. For both tests, we reject the null hypothesis that the means
of the samples are equal, i.e., the KG-enhanced model generates
queries with significantly higher result set relevance with respect
to the user target query, and significantly higher result set recall
size compared to the baseline model.

4.4 Qualitative Analysis
In this section we perform qualitative analysis of the query rewrites
generated by the KG-enhanced models, compared to their baseline
counterparts.

In Table 5 are shown some examples query rewrites generated
with the KG-enhanced and baseline query pruning model. Each
query is run against our inventory and the result set size is added
in brackets. As we can observe from the examples, the baseline
model fails to correctly segment the query and often drops tokens
that are part of an entity, leading to inconsistent and ambiguous
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Figure 4: Query result set recall distribution.

Figure 5: Query result set relevance distribution.

query rewrites. For example, in the first query example, the baseline
model fails to identify “patent leather” as a complete segment, and
drops the token “leather”, while the KG-enhanced model correctly
identifies this segment as a material entity and retains it in the
predicted query. Similar behavior can be observed for the next 3
examples. For the last source query example, the frequency of the
entity “Maruzen” is a crucial signal for dropping the token, as it

is almost non-existent in our inventory. While the KG-enhanced
model correctly removes this entity from the predicted query, as we
incorporate the entity frequency directly in the model, the baseline
model fails to drop the correct token.

In Table 6 are shown example query rewrites using the KG-
enhanced encoder-decoder and the baseline model. We can observe
that the KG-enhanced model can substitute an entity with similar
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Table 5: Query rewriting examples using the query pruning baseline and KG-Enhanced model. The size of the query result set
is shown in brackets next to each query.

Source Query Target Query Baseline Rewrite KG-Enhanced Rewrite
ladies patent leather shoes thick heel (50) ladies patent leather shoes

(330K)
ladies patent shoes (370K) ladies patent leather shoes

(330K)
hot wheels fast and furious nissan skyline r-34 (82) hot wheels fast and furious

nissan skyline (1K)
hot wheels fast (22K) hot wheels fast and furious

nissan skyline (1K)
luka garza one and one (12) luka garza (3.5K) luka one (295) luka garza (3.5K)
samurai rebellion dvd (28) samurai rebellion (105) samurai dvd (11K) samurai rebellion (105)
sailor pen maruzen (5) sailor pen (5K) sailor maruzen (6) sailor pen (5K)

Table 6: Query rewriting examples using the Encoder-Decoder baseline and KG-Enhanced models. The size of the query result
set is shown in brackets next to each query.

Source Query Target Query Baseline Rewrite KG-Enhanced Rewrite
nike dunk low marina blue (50) nike dunk low panda (2K) blue nike dunk low size 11

(650)
royal blue nike dunk (1.5K)

ivory prada sandals 38 (6) cream prada sandals (130) prada sandals 38 (400) cream prada sandals 38 (130)
zyia leggings large (41) leg leggings large (450K) zyia leggings women (3.7K) large fabletics leggings

(1.3K)
lee extreme motion shorts grey 38 (24) cargo shorts 38 (45K) motion mens shorts 38 (299) grey cargo shorts mens 38

(5.8K)
used rgb corsair mouse (100) used rgb razer mouse (450) used mouse (16K) used gaming mouse (4.8K)

entities that fit the context of the query, or increase the scope of the
query to increase the recall size. For example, in the query “ivory
prada sandals 38”, the KG-enhanced model correctly substitutes
the color “ivory” with the visually similar color “cream”. And while
the rewritten query by the baseline model has a higher recall, the
query is too abstract and retrieves results with lower relevance with
respect to the user’s intent. In the third example, the KG-enhanced
model replaces the leggings brand “Zyia” with a similar brand
“Fabletics” for which there are enough items in the inventory. In the
2 next examples, the KG-enhanced model correctly increases the
query abstraction, to a level that offers a good trade-off between
item relevance and recall size. Where the baseline model either
retains tokens that are too specific and lead to low recall, or rewrites
the query to a broader scope, which leads to very large recall but
most of the items have low relevance for the original user’s intent.

.

5 CONCLUSION
In this paper we presented two approaches for query rewriting,
using auxiliary information from a Product Knowledge Graph. We
embed the Product Knowledge Graph and use the entity embedding,
together with NER, category and entity frequency auxiliary infor-
mation to enhance two query rewriting models, i.e., query pruning
model and encoder-decoder model for complete query rewriting.

In-depth quantitative and qualitative evaluation shows that the
KG-enhanced query rewritingmodels significantly outperform their
baseline counterparts. We showed that the auxiliary information
extracted from the Product Knowledge Graph is a strong signal to
identify the correct segments of the query to be dropped, replaced,
and propose entities to be inserted.

So far, we have considered rather simple architecture for infus-
ing the background knowledge, using linear transformation of the

auxiliary vectors concatenated with the encoded tokens. In future
work, we will explore more comprehensive architectures for encod-
ing background knowledge, for example using more sophisticated
graph neural networks to embed the Product Knowledge Graph
[Wu et al. 2020].

Another future direction of research is building a query rewrit-
ing model on top of the KG-Copy models [Chaudhuri et al. 2019],
commonly used for injecting background knowledge from KGs
in question answering. In such models we can explicitly generate
entity replacements based on entity similarity and relatedness cal-
culated on the whole KG. Then using the KG-copy mechanism the
model can generate top-N query rewrites, ranked by relevance in
resepct to the source user query.
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