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ABSTRACT
Query Autocomplete (QAC) systems predict the best query sugges-
tions based on customer typed prefix and other contextual signals.
Conventional techniques employ the Most Popular Completion
(MPC) method, where query suggestions that are popular and be-
gin with the prefix (prefix aware) are retrieved from a pre-computed
index. To account for contextual signals like past search activity
of the user in the session, QAC systems incorporate a re-ranking
step on top of retrieved candidates. However, this is sub-optimal
as the retrieved candidates do not necessarily contain any session
relevant query suggestions. We propose an efficient way to retrieve
session relevant, prefix aware and popular query suggestions at
the same time. We present a vector transformation technique to
combine different objective representations into one which is then
used to search in a pre-computed vector index at inference time. We
show that our method improves recall@100 over MPC and other
baselines by 13% to 15% on one e-commerce dataset and AOL query
logs without incurring significant latency.
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1 INTRODUCTION
Query Autocomplete (QAC) systems recommend query comple-
tions based on the partial query (prefix) typed by the customer
in the search box.The goal of QAC is not only to suggest user’s
intended query after minimal input keystrokes, but also to rank
the user’s intended query highly while also recommending queries
that lead to the best search engine results. Recent advancements in
natural language processing [13] have enabled advanced semantic
understanding of text beyond just lexical features. These methods
have improved understanding of user’s intent even from partially
typed queries in QAC. The primary focus of our work is to apply
QAC in e-commerce search engines, aiming to suggest queries that
lead customers to the most relevant product result page.
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Figure 1: Example of QAC

A QAC system, like any Information Retrieval (IR) system, typi-
cally involves two steps: candidate generation and ranking. Can-
didate generation produces a list of 𝐾 relevant query suggestions,
often using a method like MPC [4] which retrieves most popular
query completions for a prefix from a cached database. The ranking
step employs more sophisticated models like [14], [3] and consid-
ers features such as popularity, relevance to the customer’s past
activity, and purchase conversion rate, to create an ordered list of
top suggestions for display.

The challenges with QAC involve understanding customer intent
from partially typed queries and utilizing additional information
available to the system, such as the customer’s past activities like
queries, product clicks, and purchases. Since customers make mul-
tiple query searches and browse multiple products before making a
purchase, it is obvious that past session activity is a good predictor
of next query search. Many previous methods like [6], [2], [12] and
[8] focus on using session context and personalized features during
the ranking phase. We advocate the importance of incorporating
session context during the candidate generation phase itself, adher-
ing to the prefix typed by the customer. The impact from absence of
session relevant candidates would be more pronounced for shorter
prefixes (eg. "n" or "ni"), as MPC would narrow down huge number
of possible candidates to a very small number, thereby reducing
the probability of retrieving session relevant candidates in the first
step. For longer prefixes(e.g. "nike sho"), its likely MPC might con-
tain session relevant candidates as the number of possible queries
isn’t huge, but this wouldn’t align with the goals of QAC to reduce
customer’s typing efforts.

An alternative way to increase session relevant candidates in the
candidate generation step is to retrieve more candidates, but this
inevitably increases the latency of the ranking step. To address this
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challenge, we propose a multi-objective neural retrieval method
(MONR). We combine different attributes of a query, such as se-
mantic representation using BERT-based models [5], spelling of
the query and popularity in a single vector which is then indexed
offline using libraries built for fast similarity search of dense vec-
tors. During the candidate generation step, we create a similarly
sized input vector based on user session context and prefix. The
input vector is then used to performmaximum inner product search
in the pre-computed vector index to get top 𝐾 candidates. These
candidates are then sent to the ranker. Our method retrieves ses-
sion relevant, popular and prefix aware candidates efficiently and
from a single pre-computed index. Through this work, we make
the following contributions:

• Incorporation of Session Context into candidate gen-
eration: This enhances the quality of queries fed into the
ranking step, thereby improving the recall in the process.

• Character Encoding of Prefix: We encode the charac-
ters of a prefix ("n","i","k" for "nik" prefix) as a vector such
that it has maximum inner product with any query that be-
gins with the prefix. This aids in retrieving relevant query
candidates for the customer’s prefix.

• Multi-objective Similarity Search:We introduce a vec-
tor transformation technique that combines various query
attributes, enabling multi-objective similarity search. Addi-
tionally, this technique can be applied for filtering in vector
similarity indexes.

2 RELATEDWORK
Neural Retrieval Models: Retrieval of semantically similar docu-
ments in response to a given input text has been extensively stud-
ied in IR. BM25 [1], typically considered a sparse retrieval method,
is a strong baseline that retrieves documents based on tokens in
the input text. Recent research shows enhancements over BM25
through dense retrieval methods like Dense Passage Retriever(DPR)
[9]. These methods transform input text into dense vectors and
conduct similarity searches based on cosine similarity within a pre-
computed vector index of dense document vectors. There are many
fast and efficient libraries available to perform vector search such
as FAISS [7] which allow quick semantic retrieval of documents
using dense representations of input. ColBERT [10], an end-to-
end method that integrates retrieval and ranking in a unified step,
demonstrates that late interaction over dense token representations
in the input and documents, as opposed to cosine similarity over
single dense representations, can capture relevance more effectively.
ColBERT serves as a favorable middle ground between BM25-style
sparse retrieval and DPR techniques. Our method can be seamlessly
integrated with any of these neural retrieval techniques, incorpo-
rating not only the semantic similarity between session context and
the predicted query but also essential features like query popularity
and prefix awareness for the query suggestions.

3 MULTI OBJECTIVE RETRIEVAL
For QAC, we have the following objectives:

• The suggestions are relevant to the customer’s activ-
ity in the session. In this work, we use the customer’s

previous query within the last 5 minutes as the session
context.

• The suggestions respect the prefix typed by the customer.
• Popular suggestions are retrieved before less popular sug-

gestions.
The inputs to QAC are previous query and current prefix. We

represent these together in a vector (input vector). The suggestion
candidates are also represented as vectors (suggestion vectors). The
suggestion vectors are indexed offline using FAISS [7] and during
inference, we retrieve the top K suggestions for the given input
vector by finding its K nearest neighbors in the vector index using
maximum inner product search. Below, we explain the construction
of the input and suggestion vectors, aiming to optimize the retrieval
process for the above-mentioned objectives.

Figure 2: Vector Creation

3.1 Input and Suggestion Vectors
Both input (𝑢) and suggestion vectors (𝑣) are concatenation of three
vectors as shown in 2: (1) Query vector, (2) Character Representation
Vector, and (3) Popularity vector. Below we describe how each of
the vectors are constructed.

3.1.1 Query vector. A user typically makes multiple query searches
before making a purchase. Therefore QAC should suggest queries
that are related to previous queries in the session. We propose to
achieve this by using cosine similarity between previous query
and next query candidates. We use any encoder model (e.g. BERT
[5]) to compute vector representation for queries. For input vector,
we encode the previous query of the user. For suggestion vector,
we encode the suggestion query. Note that, the encoder model is
usually fine-tuned on the application logs so that it can recognize
associations between application related similar queries (e.g. "nike"
and "adidas" are related in e-commerce context). In above figure, 𝑢𝑠
is the previous query vector in input vector and 𝑣𝑠 is the next query
vector in suggestion vector. They are both normalized so that the
dot product is between 0 and 1.

3.1.2 Character Representation Vector. QAC needs to respect the
user prefix, as the users expect query suggestions to start with
their prefix. We need to represent the prefix string as a vector that
captures the order of characters such that the dot product with
suggestion string vector is highest when suggestion starts with the
prefix. We propose to represent the prefix and suggestion strings
with a vector of dimension𝑚where𝑚 is the maximum string length
permitted (In this work, we pick a value of𝑚 = 50).

2
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We map each letter in the prefix/suggestion string to a unique
position in the vector. The value at that position is a function of the
position of the letter in the string. The value decreases exponen-
tially as position increases. For example, the value at the position
corresponding to the 𝑛𝑡ℎ letter is 𝑒−𝑛 . We exponentially decrease
the values because it is more important to match the prefix with
suggestion at starting positions (e.g., "pap" and "app" are not sim-
ilar). In above figure, 𝑢𝑐 is the prefix string vector and 𝑣𝑐 is the
suggestion string vector. Pseudo code to create the string vector
can be found in the appendix. The prefix character representation
vector is normalized by square of the norm to ensure that the dot
product with suggestion string vector will at most be 1.

Figure 3: Character Representation Vector

3.1.3 Popularity vector. Popular queries by definition have higher
probability of being searched by users. Therefore it is important
for QAC to account for query popularity. For example, if the last
query was "shoes" and the prefix is "n", suggestions "nike shoes"
and "nike trail running shoes" are equally relevant to the session
and the prefix but if "nike shoes" is 10 times more popular than
"nike trail running shoes", then it should be retrieved with a higher
score. The query vector dot product will likely have higher value
for "nike shoes" by virtue of seeing it more often in the training
data but the popularity of queries can change wildly depending on
the day or season. A simple solution to this problem is to retrain
the session vector encoder quite regularly, but it’s impractical to
keep retraining it. It is easier to achieve this by explicitly making
use of the popularity score during retrieval. We achieve this by
representing popularity as a one dimensional vector of normalized
log popularity for suggestion vector. Using logarithm reduces the
impact of outliers and normalizing the log value with maximum
log value constrains the value to lie between 0 and 1. For popularity
vector of the user input, we use a constant value of 1. As a result,
the dot product yields the normalized log popularity.

3.2 Retrieval Score
We will compute multi objective retrieval score of a query sugges-
tion for a given input as a linear combination of the above three
objectives. The session relevance is cosine similarity between pre-
vious query in the session and the query suggestion candidate. The
prefix aware score is dot product between the string vectors of
prefix and query suggestion. The popularity score is normalized log

popularity of query suggestion, or dot product between popularity
vectors of input and suggestion. The weights on these scores can
either be manually decided as hyper-parameters based on recall
improvement or we can learn them with a logistic regression model
described in section 4.3 below.

𝑝 (𝑠 |𝑖) ∝ 𝑤1 ∗ 𝑢𝑠 .𝑣𝑠 +𝑤2 ∗ 𝑢𝑐 .𝑣𝑐 +𝑤3 ∗ 1.𝑝𝑜𝑝
∝ 𝑢.𝑣 (1)

Therefore the multi-objective score is the dot product between
the input and suggestion vectors. The task of the retrieval system
now reduces to finding top K suggestion vectors with maximum
inner product with a given input vector. Dealing with vector spaces
and inner products allows us to easily leverage libraries like FAISS
(Johnson et al., 2017) to place suggestion vectors in a vector index
offline and find the top K nearest neighbors online. Thus, we have
successfully transformed a multi objective retrieval problem into
a vector search problem. As the weights on different objectives
are only part of the input vector, they can modified as desired at
inference time. For instance, you might prioritize more relevance
and less popularity when dealing with long prefixes or a larger
number of queries in the session context. Conversely, you may
want to reduce prefix awareness for longer prefixes, especially in
cases where there could be a spelling mistake.

Below we describe how these weights can be learned using our
proposed training method.

4 PROPOSED SYSTEM
The retrieval method is summarized in the picture above. All the
suggestions are vectorized offline using the query encoder, string
encoder and popularity vector. The suggestion vectors are stored in
a vector index (e.g. FAISS) primed for fast maximum inner product
search (MIPS).When the customer types in the search box, the input
is first vectorized using the query encoder and string encoder. This
vector is used to perform top-𝐾 MIPS to get relevant suggestions for
the customer. These𝐾 candidates can be further sent to a re-ranking
step but that is out of scope for this paper. The goal of the retriever
is to produce a list of highly relevant suggestions. We measure the
quality of retriever by computing recall, that is, how often is the
customer searched query present in the top-𝐾 list produced by the
retriever. Below, we describe how each of the components of the
system are trained. We first train the BERT-based query encoder
and then train the linear weights on three objectives.

4.1 Query Encoder
The goal of query encoder is to produce vector embeddings such
that customer searched query suggestion embedding has higher
inner product with embedding of the last query in the session
compared to all the other suggestions. We train this encoders with
a bi-encoder architecture like in DPR but the weights are shared.

We use QAC logs to generate triples <𝑠, 𝑞+, 𝑞−> where 𝑞+ is the
submitted query and 𝑞− is a randomly sampled query not submitted
by the customer. 𝑠 is the previous query of the user. We train the
query encoder with a pairwise cross entropy loss function. As a
result, the encoder learns to generate similar embeddings for queries
in the same session.

3
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Figure 4: Proposed System

4.2 Linear Weights
The linear weights 𝑤1, 𝑤2 and 𝑤3 are important to identify how
important each of the objectives are to improving recall. We learn
these weights with a logistic regression model. The positive sam-
ples are submitted queries and negative samples are sampled from
semantically similar queries using query encoder but not submitted
by the customer.

4.3 Offline Indexing
Once the training is completed, we index the concatenated vector
representation of suggestions using FAISS. This index is loaded
into memory in QAC service. As customer types a prefix, the query
encoder computes the embedding for previous query if available
and the character representation encoder generates prefix embed-
ding. These two are each multiplied by 𝑤1 and 𝑤2 before being
concatenated with𝑤3 valued vector of unit dimension. We search
the loaded FAISS index with this vector and return top-𝐾 results.

Figure 5: Encoder training

5 EXPERIMENTAL RESULTS
We now empirically test our method against 2 baselines using
recall@k metric. We will use MPC as one baseline where top-k for a

given <last query, prefix> combination would mean that we would
retrieve the top-k most popular query suggestions. One intuitive
way to incorporate session context into candidate generation is
to retrieve top-𝑘/2 semantically similar queries to previous query
and combine it with top-𝑘/2 MPC candidates. We use this as a
second baseline. For our method (MONR), we retrieve top-𝑘 from
FAISS vector index pre-computed from dense representations as
mentioned in section 3. We ensure that the comparisons are made
with same 𝑘 . If the customer submitted query is present in the
retrieved 𝑘 query suggestions, we label its recall 1, 0 otherwise. We
evaluate our method on two datasets: (1) proprietary e-commerce
QAC dataset and, (2) public AOL query logs.

E-commerce QAC Dataset: The e-commerce QAC dataset we
use consists of rows which contain past search of the customer,
current prefix and submitted query. We aggregate four weeks of
data logs to compute the popularity and train the query encoder. We
employ the data from the 5th week to compute the linear weights,
as outlined in section 4.3. We sample data in week 6 to report recall
metrics at different 𝑘s.

Table 1: The recall results for E-commerce dataset at different
𝑘s. We report relative recall in comparison to recall at 10 for
MPC baseline

Model R@10 R@50 R@100
MPC (Baseline) - 1.82 1.97
MPC + Semantic 0.86 1.8 1.92
MONR 1.2 2.08 2.22

AOLQuery Logs:The dataset [11] has 16M queries submitted by
657K unique users sampled between 1March, 2006 and 31May, 2006
from AOL website. We aggregate the dataset such that each query
is represented in one row. We consider the previous user query
made within 5 minutes as session context. We used the queries
submitted before 15 May 2006 for computing query popularity. We

4
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use pretrained 𝑏𝑒𝑟𝑡 − 𝑏𝑎𝑠𝑒 − 𝑢𝑛𝑐𝑎𝑠𝑒𝑑 as the query encoder. We
sample 10K data from remaining days for evaluation.

Table 2: The recall results in % for AOL dataset at different 𝑘s

Model R@100 R@50 R@10
MPC (Baseline) 60.9 53.4 35.6
MPC + Semantic 67.0 61.6 47.0
MONR 69.7 63.6 49.8

5.1 Recall Improvement
We clearly notice a recall improvement at all 𝑘s in both datasets.
The recall improves with increase in 𝑘 as expected. In both the
results, we observe recall at 50 using our method is higher than
recall at 100 using MPC. This suggests that reducing the number of
retrieved candidates can still maintain, if not significantly improve,
the recall, while also saving latency during the ranking step. This
will also increase budget to use more sophisticated ranking models
to increase precision at top-𝑘 .

We also notice that for e-commerce dataset, MPC+Semantic re-
call is lower than MPC for the same 𝑘 . This is because semantic
candidate generator retrieves top-𝑘/2 candidates only based on sim-
ilarity with previous query of the user and combines with top-𝑘/2
MPC candidates. It does not necessarily respect the prefix, causing
decrease in recall. For AOL, dataset on the other hand, customer
usually search the same query again after a few minutes. Therefore,
retrieving semantically similar queries (exactly the previous query)
is useful and improves recall over MPC only.

5.2 Prefix length analysis

Figure 6: Recall vs Prefix length

From Figure 6, we can see the improvement in recall compared to
MPC baseline is higher at shorter prefix lengths, and improvement
over MPC diminishes as prefix length increases. This is because
number of possible candidates for a given prefix is inversely propor-
tional to prefix length. For shorter prefixes, as the possible number
of candidates in the entire universe of queries is huge, the likelihood
of top-𝑘 MPC candidates containing semantically similar queries to
previous query in the session is low. As prefix length increases, MPC

retrieved candidates set and MONR candidates have increasingly
more common queries. This verifies our hypothesis that MONR
will improve user experience at short prefixes and reduce typing
efforts.

5.3 Retrieval Score as ranker
Our method retrieves top-𝑘 candidates based on highest dot prod-
uct with the input vector. The dot product itself like described in
equation 1 is a linear combination of three scores. We argue it can
be used as a ranker. We compute mean reciprocal rank (MRR) on
AOL dataset to measure how high the submitted query appears in
the list if ordered by the retrieval score. We observe that MRR with
our method (0.174) is higher than MRR with MPC algorithm (0.045).

5.4 Latency Discussion
Our method has higher latency compared to MPC since it includes
encoding the previous query and performing FAISS search. QAC
systems usually employ a neural network based ranking model
after candidate generation which typically involves encoding the
previous query. We argue that when comparing end to end latency,
our method adds latency only due to FAISS search step. This is
usually less than 1ms [7] for vectors of dimension 768 in an index
containing 1 billion items. We believe the gain in recall justifies the
latency increase.

6 CONCLUSION & FUTUREWORK
We presented an approach to perform multi objective neural re-
trieval for session aware candidate generation in QAC e-commerce
setting. We used the last query searched by the user as session con-
text. This can be further extended to include more search history
as well as other user activities like products viewed and purchased
to retrieve more personalized query suggestions. We used a shared
BERT based encoder for both last query and next query candidates.
This can be improved using ColBERT [10] architecture get more
fine-grained embeddings of user activity. We can also extend the
method to include different objectives like purchase conversion
rate, trending score or filter queries based on a certain category like
electronics, home improvement etc. In summary, our method shows
that building one multi-objective vector index allows retrieving
query suggestions for various objectives.
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A APPENDIX
A.1 Character Representation Vector

Construction
Here we describe how the character representation vector is con-
structed. Each character in the text is allotted a unique index in the
vector. The value is defined by the order it appears in text, exponen-
tially decreasing with position in text. We first create a mapping
function 𝑓 (𝑐) which maps each character in vocabulary (26 letters,
10 numbers and 5 symbols) to a unique integer between 0 and 41.

Data: text, maxLength
Result: vector of size maxLength
Initialize V with zeros = [0,0,...0];
Initialize current vector position p = 0 ;
Initialize characters added d = 0 ;
Assume character to unique integer mapping function
f(character) ;
for all characters c in the text do

Vector position to update = p + f(c) ;
If p + f(c) is beyond the size of V, circle back to start ;
V[p+f(c)] = 𝑒−𝑑 ;
Increase d by 1 ;
Update current position to p+f(c) ;

end
Return V normalized by its norm2

Algorithm 1: Pseudo Code
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