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Research Overview: Al, ML, DS and Their Societal Applications

Al, Machine Learning, Data Science

graph/network data (graph machine learning)
text/language data (large language models)

CUNDATION h _ | k R Healthcare: Combat the Drug Crisis:
MODEL This ta APPLICATION RxNet (CIKM’21, Best Paper Award)
Graph Neural Networks, Large Language Models, DHGNN (KDD'22, Best Paper Candidate)

Combination of GNN and LLM — Diet-ODIN (KDD' 24
HetGNN (KDD'19, 1900+ citations), GFM (NeurIPS'24)) F(')i(; 2 Nut(rition D)ru Discovery:

TANS (NAACL'25), GIT (ICML25), GPM (ICML’25) OPLLERS (KDD”ZS)gI\/IGNN (vz/li/vvv'21)
MOF-DDI (CIKM’23)
.. Anomaly/Malware Detection:

Healthcare CYBERSECURITY
APPLICATION MSCRED (AAAI'19, 1100+ citations),
Social, MIST (WWW’19, Best Paper Candidate)
Knowledge, Rep2Vec (KDD'22), MetaHGNN (1JCAI'21)
Malicious Activity Detection:

Information
MetaHG (NeurlPS’21), GraphBERT (ICDM'22)
AND INFORMATION

ste
. LLM-HetGDT (ACL'25)
Cybersecurity
SYSTEMS APPLICATION  FIRE (EMNLP’20), Grape (EMNLP’22)

Robust Learning, Interpretable Learning SGCL (CIKM’22), NGQA (ACL'25)
GAME (ICLR’23), G-FAME (WWW’23), !

CFExplainer (KDD’23), Dragon (ICLR’24), LIME (KDD’'24)

Core ML

Data Efficiency: Self-supervised Learning,
E';,II:IO%E[" Few-shot Learning, Data Distillation

Model Efficiency: Prompt Learning,

Model Distillation/Pruning

FSRL (AAAI'20, 300+ citations), TENT (KDD'22),

ParetoGNN (ICLR’23), NOSMOG (ICLR"23),

IAGPL (TMLR’25), MASS (ICML’25)

TRUSTWORTHY SOCIAL, KNOWLEDGE,  Knowledge Reasoning and QA:

MODEL

Recommender Systems:
SHT (WWW’23), MMSSL (KDD'22),
RecipeRec (1JCAI'22)

Chuxu Zhang On the Intersection of Language and Graph Models



Outline

Introduction and Background

n the Intersection of
Language and Graph
Models

Conclusion

Chuxu Zhang On the Intersection of Language and Graph Models



Introduction: Various Data in Real-world Applications

Spatial-temporal  Tabular
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Social Media Cybersecurity/loT Knowledge System /
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Introduction: Graph (Network) and Text (Language) Data

~ M

l/ o Encode Relational Information

&g ™\ Node and Edge ﬁ ) Structured Data

Graph/Network
Complement
& Token/Word Unstructured Data
— Encode Semantic Information
Text/Language
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Introduction: Graph Neural Networks (GNNs)

* GNNs learn representations of nodes by iteratively transforming and
aggregating/propagating the features from their neighborhoods

Downstream tasks/applications

AI/ML z E
Classification Prediction Regressmn
(drug user classification) (drug-drug interaction) (patient risk level prediction)
Neural
network
O >
A o O message-passing mechanism
| (neighbor aggregation, e.g., attention)
OA
-1
: - AGG({hu e N(v)}; @)
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Introduction: Graph Neural Networks (GNNs)

+ GCN (ICLR’16)

3 Convolution Aggregation

« GSAGE (NeurlPS'17)

3 Pooling/Recurrent Aggregation

« GAT (ICLR’18)

3 Attention Aggregation

* HetGNN (PhD work, KDD'19)

3 The first GNN on Heterogeneous Graphs
3 1900+ Citations, 2024 ICBS Frontiers of Science Award

« Our recent works: GFT (NeurIPS'24), GIT (ICML'25), GPM (ICML25), G2PM (NeurlPS’25)

3 Graph Foundation Models Across Datasets/Tasks/Domains
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Introduction: Large Language Model (LLMs)

* Pretrained Architecture

Softmax (next token)

¢
Representation — Linear QA/Dialogue Document Analysis
sl e—s e
O Enc‘:der > Deci’der O |nstruction tuning &SN
3 8 F' . ‘s. .J‘
S ine-tuning
o Encoder » Decoder = _ EE&'?J
% s : % Adaptation
= Encoder » Decoder 3
S 3 4 c
c ®
L Encoder » Decoder ‘ \
N s ¢ L;;L
Token Embedding Previously Text Generation Advanced
t Generated Text Reasoning
Input Text
Transformer
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Introduction: Large Language Model (LLMs)

@ Qwen2.5
m LLaNA (& DeepSeek V3
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Introduction: Graph Model and Language Model

X N\ Structured Data
|/ Encode Relational Information
Graph/Network
Complement
Enhance

— Unstructured Data
Encode Semantic Information

Text/Language
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Graph Data/Model Enhances Language Model: MASS

* Data Selection for Pretraining LLMs: Improve Training Efficiency and Effectiveness
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LLM

Pretraining Fine-tuning
Continue-training Adaptation

Challenges

X

EFFECTIVE INEFFECTIVE

i —
Massive Data Applications =y ale

2 >

High-quality
Subset

Solutions

Data Selection

MASS: MAthematical Data Selection via Skill Graphs for Pretraining Large Language Models, ICML’ 25
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Graph Data/Model Enhances Language Model: MASS

* Data Selection for Pretraining LLMs: Improve Training Efficiency and Effectiveness

CONTENT: Find the greatest value of = such

o o that £=259 — _2_ The expression when sim-
H I g h - q ua llty plified by factoring the numerator transforms into:

(z=9)(=+10) _ %ﬂ, Canceling the (z—9) factor on
Subset

LLM

z=9
both sides, provided = # 9, we get: z + 10 = 12?
Multiplying both sides by (z + 7) to eliminate
the fraction yields: (z + 10)(z + 7) = 2. Ex-
panding and rearranging this equation results in:
? + 172+ 70 =2 => 2%+ 17z 4 68 = 0. Fac-
toring the quadratic gives: (z+4)(z+13) = 0. The
solutions to this equation are z = —4 and z = —13.

The greatest of these solutions is .

Pretraining

Data Fine-tuning
Selection

SKILLS: Equation solving, Factoring polynomials,
Fraction manipulation, Quadratic equations, Root
identification, Expression simplification, Algebraic
transformation, Polynomial division, Inequality con-
| sideration, Solution verification

Assumption: a data point reflecting (1) more important
math skills or (2) more compositional information of

Prior methods: e.g., RHO-1 [NeurIPS'24], AutoDS [ICLR'24] math skills should receive a higher quality score.

Limitation: concentrate on general domains while neglecting the db ’
underlying knowledge and their interrelations of specific domain "
data, such as mathematical skills for advanced reasoning capabilities.

MASS: MAthematical Data Selection via Skill Graphs for Pretraining Large Language Models, ICML’ 25
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Graph Data/Model Enhances Language Model: MASS

Prompt Template to Extract Skills

Please assume the role of a math teacher and analyze the provided question with the following steps:

1. Determine if the text involves mathematical knowledge, reasoning, or problem-solving skills. Respond with
”YES” or "NO”.

2. Identify 1-10 concise, general mathematical knowledge points being tested. G - (V, E, A) ,
Small high-quality data Instruct LLM . V: skill nodes
(e.g., NuminaMath) (e.g., GPT or Qwen) Several math skills  E: edge of skill co-occurrence
Reference Prompt Collect Construct
Dataset LLMs Math Skills Skill Graph

S L] A\
|
‘ . .
Target Score & Rank Top K% High Continue train
Dataset w/ Skill Graph Quality Subset Fine-tuning

S A So =

MASS: MAthematical Data Selection via Skill Graphs for Pretraining Large Language Models, ICML’ 25
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Graph Data/Model Enhances Language Model: MASS

Target Score & Rank Top K% High Continue train
Dataset w/ Skill Graph Quality Subset Fine-tuning
0.6 0.1 0.2
o 12

08*A33+0.6*A;3+| Sym| ©.1+0.2+0.4+
0.9 = Azg + 0.7 *A35 0.1+0.1
= 0.4 = 0.9

reworked my formula in
method 1 ...

# Probability of Compute
getting 2 Aces, 2 v
Ki d1 . P 0.8
ficgsczzds pgr(ggnh;?uda Slmllanty ‘ Ma;(g -6,0.8,-) AggrEgatEA
(Part IT) So I B
0.5

ID:1

0.7 0.1
Aq, i = O'(Tlcnt T) = |e}|(p (Uz?tzm) IVI
Zj‘i ex fT . .
Lo score(x) = Z simggg (T, v5) Why it works
t exp () =1 (1) more important math skills

Aij=o(ef!,T) = 5 (F) V] V] (2) more compositional

» exp ( 24—

e ! = Z Ajgsim(z,v)+) ) Ajsim(z,v) information on math skills

sim(z;,v;) = max cos(Emb(z;), Emb(dy)), J=1 v €N (v;)
kE'v

MASS: MAthematical Data Selection via Skill Graphs for Pretraining Large Language Models, ICML’ 25
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Graph Data/Model Enhances Language Model: MASS

Table 2. The main experimental results. TinyLlama-1.1B and Mistral-7B are continuously pretrained using both the original and
selected subsets of OpenWebMath, OpenWebMath-pro, and Jiuzhang3.0. The bolded entries indicate the best results within each setting.
* indicates that results are from ProX (Zhou et al., 2024a)

Unique Trained . MMLU  SAT
Dataset Method | 1ot okens | GSMBK MATH SVAMP ASDiv MAWPS TAB MQA oo\l | Avg.
TinyLlama-1.1B

wlo continual pretraining | 27 28 10.9 17.9 20.5 125 140 163 219 | 133
- 146B  14.6B 52 3.0 20.7 31.4 410 146 101 19.5 375 | 203
RULE* | 6.5B 15B 45 2.8 175 29.4 39.3 151 124 19.4 250 | 18.4

RHO-1" | 14.6B 9B 7.1 5.0 23.5 412 53.8 - 18.0 - - -
OpenWebMath | ProX 5.1B 14.6B 8.6 3.0 23.8 40.2 516 196 149 261 250 | 23.6
DSIR | 49B 14.6B 5.5 2.6 24.1 37.8 543 169 121 25.4 23 | 221
AutoDS | 4.9B 14.6B 7.3 2.4 22.9 39.2 527 184 138 232 241 | 227
MASS | 49B 14.6B 9.0 4.4 249 41.4 548 215 139 203 250 | 23.9
: 5.1B 14.6B 8.6 3.0 23.8 40.2 516 196 149 261 250 | 23.6
OpenWebMath | DSIR 3B 14.6B 8.8 32 24.1 415 53.1 189 143 27.6 275 | 24.4
-pro AutoDS | 3B 14.6B 9.1 45 224 40.8 543 232 13.1 26.5 28.0 | 24.7
MASS 3B 14.6B 10.2 5.8 23.8 23 579 253 153 270 344 | 269
- 3.4B 6.8B 22.3 19.0 46.4 60.1 732 296 19.1 24.0 344 | 364
Jiuzhang3.0 DSIR | 24B 6.8B 24.5 21.3 482 63.9 744 288 192 221 336 | 37.3
1uzhang>. AutoDS | 2.4B 6.8B 26.7 20.8 51.3 66.7 73.5 3.1 193 22.4 328 | 383
MASS | 2.4B 6.8B 30.1 24.8 525 69.1 807 329 204 227 344 | 40.8

Mistral-7B

w/o continual pretraining | 41.1 10.6 64.9 68.5 87.3 548 339 49.9 65.6 | 53.0
OnenWebMath - 144B  9.6B 44.5 19.0 60.6 68.4 878 505 445 50.9 562 | 53.6
penWebMath ' viass | 4.8B 9.6B 47.7 232 64.6 74.7 9.5 557 507 526 65.6 | 58.4
OpenWebMath - 5.1B 5.1B 47.1 21.8 632 73.7 89.5 582 426 522 562 | 56.1
-pro MASS 3B 5.1B 532 25.6 67.0 76.8 %24 576 5.8 545 812 | 62.0
Jiuzhane3.0 - 3.8B 3.8B 66.4 39.4 82.9 85.9 908 353 618 401 500 | 614
&2 MASS | 2.7B 3.8B 70.0 438 84.3 85.7 937 357 635 469 65.6 | 655

MASS: MAthematical Data Selection via Skill Graphs for Pretraining Large Language Models, ICML’25
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Graph Data/Model Enhances Language Model: More Study

* QA: Knowledge Graph as Retrieval Augmentation for LLMs
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: ig——— \IngredlentB 5—*- :: \_gr___/ \ '8 aorf{{(mtmdict : \_gr___/ N o 01‘5:) match
! T has /;za s \ Habit ]5;}5 X T as /;ontains has (Obesity)l | I as A:‘ontams has (Obesity)i
i | Classic mixed (———~]/' ! | Danish pastry (T - :: Potato salad (T S !

Y s 1,9 5 o g N | . B
i %vegetables Gﬁ:}%eﬁ ) has ! :b with fruit e U_ser ) \\{z as X %wﬁh egg A User ) \\f as |
1 . ' —_——_ . —_—— " . ) —_—!
: Fl_CD_n.-t‘(\IIHS J has r Diet 15 : ‘_l_cininns has ( Diet \i : ’_I_CT‘ITIHS {has ( Diet i
v e ] 3 2 1 I » z 1
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1 (] 1

1
1
1
Mixed links: match and contradict )

Single link: one condition one tag

f p—— ~ |
E 3@) | Standard_J Question: Based on the information provided, please judge if food Danish pastry with fruit |
o — I
E is healthy or unhealthy to&h_e Esgr}and why? <Task Specific Prompts> ) |
o — — 4
! | -B |( Binary Classification (ML !( Multi-label Classification | | TG ! Text Generation |
: —_—— C__—__) ————— | _—— = I
- - - : 5 o~ - 1
' do ob | Answer: No oo Answer: high calorie, A Answer: No, because the i
amn aw | | ———— amm

E oo—i3) = = f_high sodium_/l ~-—== | food is high in calorie ... ) |
_____ |

v

b) Overview of the Different Task Levels in NGQA Benchmark

NGQA: A Nutritional Graph Question Answering Benchmark for Personalized Health-aware Nutritional Reasoning, ACL 2025
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Graph Data/Model Enhances Language Model: More Study

* QA: Graph as Augmented Information for LLMs

Question: <Qpy:=> Swan lake, <Qp\ > the slecping beauty and <Qp\> {he G e Question: <Qpy;=> Swan lake, <Qgyr> the sleeping beauty and <Qgpyr> the

hutcracker are three famous ballet by? T 9 nutcracker are three famous ballet by?

Passage #1: Petipa appealed to popular taste with The Pharaoh’s Daughter [— 3 Q ! )_’ Passage #D: Swan Lake became one of the symbols of the August Putsch for

(1862), and later The Talisman (1889), and La Bayad (1877). Petipa is best U o many people in the post-Soviet states, because during this event all <Ppy;=
e USSR TV channels broadcast the ballet repeatedly for three days in a row.

remembered for his collaborations with <P~ Tchaikovsky. He used his

music for his choreography of The Nutcracker (1892, though this is open to ‘II 'Swan Lake', Op. 20, is a ballet composed by <Py> Pyotr Ilyich Tchaikovsky

in 1875. Despite its initial failure, it is now one of the most popular of all

ballets. The scenario, initially in two acts, was fashioned from <P Russian

and <Ppy> German folk tales and tells the story of Odette.
l

WIKIDATA
Tokenization l ¢ Graph Construction < » Graph Construction * ¢ Tokenization
. — <QEwT> Swan lake  <0enT>The sleeping beauty <PENT= Russian  <PENT>German

<0ent> Swan lake  <Cent>The sleeping beauty  <Pent>Tehaikovsky <Pewt> Lev vanov Ty - P 41
P N assage #1: ¥ \ .y
OesC0eamd-00o--00a {swany ;N ! gerl: | /swan, - DDDDDDDD? 00000

¥ —— : .
Passage #2: \ ‘
TS-Encoderg,, ' TS-Encoderg,,

some debate among historians), The Sleeping Beauty (1890), and the definitive
revival of Swan Lake (1895, with <Pyy= Lev Ivanov) These works were all
drawn from European folklore.

3
-
-
-
=
gy

P

_— S

MRussian

\ ! S0
\ 1 {German/
b VR S

.\ ] F f—-'\
Vo Ny, Passage #k: ; ¥
WU/ WV CEErrEEED . coern.- | WUy N2 E"DEI.I"D D@D@
|

¥

C_PDU*D D@.@ | J' |
i . ) !

[ Node Attribution ] TS5- [ Node Attribution ]
Relation-aware GNN Decoder Relation-aware GNN
J/ . <
éD Klllowledge Fus%n l | R ¢ Knowledge Fusion
TS-Encoder ' Answer: T5-Encoder
@ ee0-@o--aco T T .
mew 800 —» ® ) Tehaik ovsky " |« See tess0 -80-800

Knowledge Graph Enhanced Passage Reader for Open-domain Question Answering, EMINLP 2022
On the Intersection of Language and Graph Models
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Graph Data/Model Enhances Language Model: More Study

* Text Generation: Graph as Augmented Data for LLMs

rTTeSsoo------o-- I negative sample queue
1 Z Node dropping : {ki, by, ..}
i *. Edge dropping | GloVe
: O Attribute mask ! embedding
sentence|logits
| augmentation Y | [ £ ] 7
] .
\ for 2 views |4 I a cattle on grass...
scene graph graph ! -vg —p GIUETY | GAT [&——| LSTM, JE I e
generation abstraction! \ ) ' | context projector | maximize
_’: Gauery ! ! mean i distance
i AT TR ! li 5 '
»| Hier. 1 pooling| 2 e
! 1 O
query — e
unlabeled : g qéf) : X > _Att. ! i =1 I b
. 1 1
lmge , scene graph \ A, ! : \ ) | q
' : 1
| augmentation | Gt¥ querybranch ~ TTTTTTTmTmeees
key branch
_________________ minimize
: sentence|logits distance
1
I k [acownearsea... ]
! g »| GAT LSTM,
I ~— —
xauery
I
1
object !
detection ' -
Xkey k+
- I J |
contrastive
graph and feature generation caption generation learning

Look Twice as Much as You Say: Scene Graph Contrastive Learning for Self-Supervised Image Caption Generation, CIKM 2022
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Language Data/Model Enhances Graph Model: Foundation Model

LLM

% 2

Cross-domain Database

Language Foundation Model

z
|| -'|

2

>
,‘.| g

g

3

=) [+-
Applications E':WJ

2

Graph Foundation Model

Massive Data

Z %

Pretraining & Adaptation

Pretraining
Continue-training

Fine-tuning
Adaptation

Downstream Tasks

9P 2
@/g == Prefrain —> Finetune ;_: ﬁ
H _\ __f
= - —> Distill

Social Academic - -r, Node Link
: 9
== Prompt n -
@ Text

=P 7cro-Shot

Web Molecule Loss Graph Generation

Generative Graph Pattern Machine, NeurlPS’25

Shared
vocabulary set

=]

What could be
the shared set
among graphs?

Chuxu Zhang
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Language Data/Model Enhances Graph Model: Graph Foundation Model

o [ Triangle ]
8g 2y &3
= Sub-structures

lf

-~

Social Academic ..
; j Connectivity
Web Molecule T [ Motif ]
4 N
Anonymous Walks
Pattern
Sampler Target Graph PV
V. — 00000
g J
— w — 0-O-000G
I Different
. m — 00000
Generative Graph Pattern Machine, NeurlPS’25
Chuxu Zhang
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Language Data/Model Enhances Graph Model: Graph Foundation Model

(a) Textual Generative Modeling via
Word Sequence

Target
................................... - EMA Encoder

3 [y ey W R 12 & > & ]

M)g_sit H . Substruc_turc
v the gy, Transformer (GPT, BERT, Substructure Patterns T 1 Reconstruct 1 ! AN Fmbedding
LLaMA, etc.) (g @ @ _ 0] ! .

. ‘b‘ Q }0 rn rn, T3 T, Ty ... Iy ' Sequential Model

Tokenize ! (Transformer, RNN, etc)
(b) @ ® ® [ GZPM D } ) / \ A\
ecoder Equals 1 2 3 1 4 3
ﬂ g" 5?10 ‘g q: * 1 3 2 4 5
M M M '
(C)SG;aph Generative Modeling via :> Graph o&o® °{,<?® Q\‘fo® G@EOEE & E T Conen
ubstructure Seamnemaa res. o~ Ly e emmam > 7
structure Sequence (Ours) Mol ! - T Add Mask Token RRRRKT
asking
" ey e e C M] Random Mask ~ }:)_ h; hy h; hg
i > [M] M
% & Masked Pattern o M] G?PM Encod —> Random Walks
é L S . ST ncodaer
go Mask Token g'o [M] [M] Node Feature
Hidden State
o) Flatten ® @ @ Edge Feature
_ M c\cg — ‘g_o
Reconstruction i cz-o [ ] ] Visible Tokens [}0 cz-o O\CQJ@:|

Generative Graph Pattern Machine, NeurlPS’25
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Language Data/Model Enhances Graph Model: Graph Foundation Model

WikiCS

Flickr

Pubmed Photo Computers Arxiv Products A.R.
# Nodes 19,717 7,650 13,752 11,701 89,250 169,343 2,449,029 -
# Edges 88,648 238,162 491,722 431206 899,756 2,315,598 123,718,024 -
Supervised GAT [55] 83.1+03 91.9%0.5 87.9x05 769+£08 507x03 72.10£0.13 7945%+0.59 5.7 Source Arxiv HIV
GPM [62] 847+0.1 927£03 900+04 80204 522+02 7289068 8262039 13 “pooo Products HIV Arxiv PCBA
GCA [78] 833+05 924202 871202 774+0.1 49.0+0.1 71.23+009 7839%0.03 69 _
Contrastive BGRL [48] 83.9+03 925+02 882402 775+08 497+02 7051+003 78.59+002 5.7 ggﬂ :—gg] 67] ;gg E(l}é Jﬁ 32‘; 83 Jﬁ 3}_}1 82 :B 3%‘3 ﬁg %
CCA-SSG [72] 81.8+05 91806 88603 753+08 475+02 71242020 7527+005 8.6 : i o S il
GraphMAE [21] 810405 920+03 892£0.5 771405 505401 71.75+0.17 7889+001 60 gﬁ%ﬂaﬂ BT ;22 E‘l}'i B gi; g? ﬁ gg'g 83 :B ;g'z Eg'g }B
GraphMAE 2 [22] 813204 924+02 88.3+09 77604 504+0.1 71.89+0.03 7933001 54 p : DL S 2 o
Generative S2CAE [47] 80.1+05 914+0.1 853+0.1 753+08 48.1+0.8 67.77+036 7670+0.03 103 G2PM 81.3(0.71) 768(19]) 726(0.37) 719231
Bandana [76] 835+05 91407 87.7+02 773+03 479+06 71.09+024 77.68+005 8.1
G?PM w/o Pretrain  83.9+02 92.8+02 87.1+03 785+04 507+0.1 69.64+0.08 7690+0.16 6.0
G2PM 84.3£0.1 929:02 88803 79.0+04 51000 7231007 8056001 2.0
HIV PCBA Sider MUV  ClinTox IMDB-B REDDIT-MI2K A.R.
# Graphs 41,127 437,929 1,427 93,087 1,478 1,000 11,929 -
# Nodes ~25.5 ~26.0 ~336 ~242 ~26.1 ~19.8 ~391.4 - - -
# Edges ~275 ~28.1 ~70.7 ~52.6 ~555  ~193.1 ~913.8 ; Pretrain Arxiv + FB15K237 + ChemBL
Supervised  OIN [67] 758408 703%03 57.7+08 74409 83406 733+05 39414 63  Downstream Arxiv FB15K237 HIV
P GPM [62] 77.0£09 751+03 590+00 746+14 824+03 827+05 431403 3.0 (Academia) (Knowledge Graph) (Molecule)
GraphCL [69] 755+03 724+21 573+09 683+26 829+03 71.1+04 37.9+24 8.0 BGRL [48] 70.8 £ 0.2 86.5+0.3 68.5+ 1.6
Contrastive JOAO [70] 76.8+£03 734+15 58505 723+1.0 822+03 702+3.1 39.9 £ 0.6 6.0 GraphMAE [21]  70.3+0.3 87.8+0.4 64.1+0.5
Ontrastive  NMVGRL [18] 75.7+0.7 70421 605+06 715+12 83.6+02 742+07 395+ 1.8 5.7 :
InfoGCL [66] 773406 746+0.7 587+07 734+10 803+07 75.1+09 39.3+0.5 54  OFA[32] 71.4£0.3 84.7+ 1.3 720£1.6
: GFT [60] 719+ 0.1 89.3 + 0.2 72.3£2.0
GraphMAE [21] 77.8+£09 732+14 60600 73.7+£0.8 84.8+0.5 755+0.7 37.6+25 4.1
Generative  S2GAE [47] 75608 729+00 58009 716+08 806+04 75806 379+ 1.8 7.0 G’PM 72.5+ 0.1 88.9+0.5 74.1+1.3
G?PM w/o Pretrain  69.8+0.1 684200 588+03 663+14 80.0+18 80.0x0.8 37.5+0.3 8.3
G2PM 787+0.1 756+01 61202 757:04 866:08 83.008 41.8 £ 0.3 1.0

Generative Graph Pattern Machine, NeurlPS’25
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Language Data/Model Enhances Graph Model
* LLM as Text/Attribute Generation for GNNs

A Step 1: Node Properties Step 2: Node Description Step 3: Prompting LLM Step 4: Explanation
Node Features with
== Different Spaces i ; > (o) Node S [
- Text \ [ Output the
Node Textual % P o v Node Type: ... potential class of The potential
. entrality: 3 .
Text Descriptions Nod Graph Type: ... the node among - class for the
. Clustering ____0__e_., = (Optional) Node Texts: ... {classes of nodes} =
A single model CANNOT Coefficient: 0.25 | Property | =— (Optional) Neighborhood and provide < the reason is
Attributed Graphs handle graphs with Betweenness 4 ;:;ts; L reasons for your
. . . e Properties: ...
different feature spaces. Centrality: ... Neighbor assessment.
- Text ~~ Final Node Descriptions
(a) Feature Misalignment Across Graphs i
Figure 2: The framework of our topology-aware node description synthesis (TANS).

NND

Text ) Step 2: Generate Basic Node Descriptions
'%_ ﬁ - Prefix Given a node from a {Graph Type} graph, where the node type is {Node Type} with

A single model CAN {Node Number} nodes, and the edge type is {Edge Type} with {Edge Number} edges.
Text-Attributed LMs enable the feature handle graphs with a - . . - . .
Graphs (TAGS) alignment for TAGs. single feature space. Node Text (Optional) The original node description is {Original Textual Descriptions}.
. Neighbor Text (Optional) The following are the textual information of {k} connected nodes. The
Language Models (LMs) Enable Feature Ali ent
- ,(I{),,,,nfglf,,gg, - ,f ,(, ,E), I,l o ,e, ,“f L g,I,l!n,I{ . descriptions are: {Textual Descriptions of Selected Neighborhoods}.
. Node Property The value of {Node Property} is {Value of The Given Property}, ranked as {Rank
We need to collect graphs from scratch, focusing on those
- . . of The Nodel}% among {Node Number} nodes.
with inherent node semantics, such as citation networks.

Step 3: Prompting LLMs
>y Can we convert existing graphs to text-

= attributed graphs using LLMs? Suffix Output the potential {k} classes of the node and provide reasons for your

oz assessment. The classes include {Classes of Nodes}. Your answer should be less
than 200 words.

-
.

(c) Limitation: How To Collect Text-Attributed Graphs?
Table 2: Prompt templates.

Can LLMs Convert Graphs to Text-Attributed Graphs? NAACL 2025
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Language Data/Model Enhances Graph Model

* LLM as Data Augmentation for GNNs

~{ (a) Pre-train HGNN }-, -~ | (b) HG Augmentation via LLM | —
‘ ; @E‘ :r Given <User Info> &, , please generate a synthetic user that ... E
] S = b
2ol B Here i the geneatod ver: SSYRURGHINGS &) |
=8 R ™ e N
g ] ﬁ% 1 Given <User>, <Neighbors>, and €Syn User Info=, please determine i
- o I T T e ———
S )
lr The synthetic user should connect to <Neighbor [Ds> i
1 () ! !
{ (¢) Prompting Function for Drug Trafficking } l
: ’ SRR RIS RN SR IRNS RN NI NSNINED . f................................E :. ................................ E :'"""""""""E :
: g B Node Prompt Sgcture Pf(:ézpt - Cosine Similarity | Lce
& /a & ﬁ m @5 & V.S. y Lo
E & glﬁ % R ga” L%ﬁ : -l Cenanean l ...... .t
- == | = [ | °F
' = \ 2 (T) 3@ ....-I b i Class Prompt | 25
NENES @ 8 OO — s 22
: : = : i et g &
| & o M & mm 2
&, Drug-related User § Benign User ég Tweet @Z Keyword Anchor User Synthetic User

LLM-Empowered Class Imbalanced Graph Prompt Learning for Online Drug Trafficking Detection, ACL 2025
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Language Data/Model Enhances Graph Model

e Healthcare: LLM as Interpretator for GNN Output

== e
Shared Dietary |  (a.1) Shared Dietary Pattern Learning with (a.3) Graph Refinement with i
Pattern Formulation | Macro-level Aggregatmn Noise Reduction for the Detection i
Meta-path Extraction E ) Same Label? i
‘%_@_ 3} i 3 . Concatenation i _I_. O e O i
User-Habit-User — — :
g_%_ gm i Meta-path Filtered . ) :
i Subgraph GV#Y  Subgraph GU#Y Unified Meta-path (g :
User-Food-User : Sub grapk gum !
i i Refined Meta-path i
I ! re . ]
I -®- D ; QO ) Subgraph G Detection of Users ;|
: — Fusion with Opioid Misuse | |
: Meta-path Filtered i
i Subgraph GY*Y  Subgraph GUY*Y :
R P L S S FE g
i (a-2) IndlVﬁ}’éﬁﬁ:{ﬁggﬁg&ﬁﬁﬁmmg with i (b) Analytical Reasoning for Interpretation
i Whapit : N
4 s — | X5
_E_' @ Wosor- hmt o i @_‘ Users with Shared R p ;\9
! PROMPT : attern
NHANES i W2 | Weight i Dletary Patterns @;"i' Discovery
Dietary Graph ! e < fan I
! i Prompt
. 1 user Attn . R Statistical
Established : o ! Generation Reasomng Statistic
Benchmark i Woser fﬂod cight N ! Significance
> i 0 — wfood T R—~H—C i | Erowril)}s| Dietary Pattern o
! I with Attention tput Analysis  y iterature
nhanes L e o I i Endorsement
O O Q& OO OO Psm O & ®)

Diet-ODIN: A Novel Framework for Opioid Misuse Detection with Interpretable Dietary Patterns, KDD 2024
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Joint Graph and Language Models for Various Applications

* Recommender System: GNN and LLM as Multi-modal Data Encoder

e e e e S A T e e S S SR S S S
, [ ) ) TR '
I coconut  lemon ; ! (a) __Extract ingredients_ [ Ingredients Set | hTF Transformer-based : (b) i
Hurricane ] dark liqueur juice ; I for each recipe ~ | Transformer > Recipe Embeddings | e EC |
(i orange ! | D | - q
Bahama Mama (pineappler) s | B | :[’_ﬂ:—> @ & [“ﬁi] —1 |
Fomsmmmmseeeecececeecceoo- e “.juice Rl 4 Y e i
| Ingredients: v - : I a | Set Transformer MAB(x) :
: ;’alz';"’me;“"‘le °4°°,:’:“;r'a':“2‘;",zm°"“ i 3 RGNN U — Recommendation | ———-——————=———=—==-———————————— l
| Juice, uice, uice.
i pineapple j g |5 = Loss I (c) |
s smsmmemnamiad || WERETNNWETT a7 I o ' W, |
. Instructions: , Hurricane >~ NY/-, -~ Afterglow | | = GNN-based O B, st I
| Stir all ingredients with ice. e 9\3 "Bahama : Shared User & Recipe : DT' Y ’ l*D'D\.I Y I
! Strain into a chilled tumbler filled ] R s - Mama I Heterogeneous Embeddings + | []—”»l#.[[}[]/’hn :
|_withice. ] EAEREREE ST o S s i 108 GNN with ] Weo s ’ !
__________________________ ! ' ~ | hi . | W, ‘v @3~ Y N

9 I ! oy 1 N ierarchical ' PN poachi vy WA N o
. Reviews and Ratings: | i @) O @) ; | é attention By | | S : sz g b g B E>I4LL’®_’ :

! X ) e 'a 3 ! 3 ' o - pir Ty PraodE >+ | ¥
 Publisher: A delicious drink thatis 1 | 'Publisher Commenter 1 Commenter 2! = Graph Contrastive | | - b &, .0 '
i probably enjoyed around the region. | ) | 8 2 | D_rS,l _— |
| A ' - | € Learning Loss , W =l TR !
| Commenter 1 ( ): This drink !/ | CIEJ R e | []_"3,[' —,<—A>D¢DD\ :
| is crazy good! Sweet and smooth ... | O Ingredient O Recipe ) User : o — I | : DWra = e~y D*DD/};I |
i Commenter 2 ( ): This is . . . . | E( ) Objective | . "3 . :
[ | perfect. Me and DH both loved it .. | - |ngredient-Ingredient —— Recupe-.Reape : Contrastive Futetions I Adaptive Node-level Relation-level |
: ; — Recipe-Ingredient ---—User-Recipe | ~—— " Embeddings : Attention Attention :

RecipeRec: A Heterogeneous Graph Learning Model for Recipe Recommendation, IJCAI 2022
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e Healthcare: GNN and LLM as Multi-modal Data Encoder

Joint Graph and Language Models for Various Applications

I [INT] Although no specific drug

1 interactions with topical glaucoma drugs

I or systemic medications were identified in

I clinical studies of iopidine, the possibility
of an additive or potentiating effect with

| opiates should be considered [SEP]

! [INT] Previous studies have demonstrated a
significant reduction in the oral

| bioavailability of trovafloxacin and

1 Ciprofloxacin when administered

1 concomitantly with an intravenous ppiates

I such as morphine [SEP]
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(a) KG construction & Text Retrieval

Chuxu Zhang

(b) Text-Graph Encoder

(c) Mol GNN & Optimal Transport & DDI Prediction

A Multi-Modality Framework for Drug-Drug Interaction Prediction by Harnessing Multi-source Data, CIKM 2023
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Joint Graph and Language Models for Various Applications

* Social Network Analysis: GNN and LLM as Multi-modal Data Encoder

I T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T TSI TTI T ST T T T T T T T T T e EE T A
I Z; 1
! tweet o o Gony —— !
I T
Pre-train 2 ~ > Maximize :
BERT ; i Z l'" Agreement ,
/'y I > Aug, —» GCNp o3 !
L s N R N o o o I
. Tiyy T ., o o o . . I
. ; b) 1
| MLP _":_"r’I 11 Word Sentence | (P)
| 7 1 y Adaption_|[*, Adaption :
| 1 ; %
| I /’ ‘:#]_’ Word | !
, others S : I Adaption :
[ + — I
[ user B |
| — Adaption
< B T I
' '
) LB Multichead |[|| Feed , o i Multi-head [ll|  Feed =
i I |[B] Attention Forward " ‘ ; "| Attention Forward x
| Adaption Adaption 1
I
I
N J w w,s \ &3 J 1
| v 4 n Zn Zn bl 1 Z adp
' n Layer(s) (m-n) Layer(s) (c) |

GraphBERT: Bridging Graph and Text for Malicious Behavior Detection on Social Media, ICDM 2022
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Conclusion

* Graph Data/Model Improves Language Model
3 MASS: LLM for Advanced Reasoning
3 Graph as Augmented Information/Data for LLMs in QA, Text Generation, etc.

* Language Data/Model Improves Graph Model
3 GP2M: Graph Foundation Model

5 LLM as Text/Attribute Generation or Data Augmentation for GNNs, etc.

* Joint Graph-Language Model for Societal Applications
3 Recommender Systems, Social Network Analysis, Healthcare, etc.
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0&A
* Feel free to contact me for any questions!
g Contact email: chuxuzhang@agmail.com
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