

On the Intersection of Language and Graph Models

Chuxu Zhang

Associate Professor of Computer Science University of Connecticut (UConn)

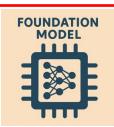
ICDM ISIR-eCom Workshop, Nov. 2025

Research Overview: AI, ML, DS and Their Societal Applications

Al, Machine Learning, Data Science

graph/network data (graph machine learning) text/language data (large language models)

This talk



Graph Neural Networks, Large Language Models, Combination of GNN and LLM

HetGNN (KDD'19, 1900+ citations), GFM (NeurIPS'24), TANS (NAACL'25), GIT (ICML'25), GPM (ICML'25)

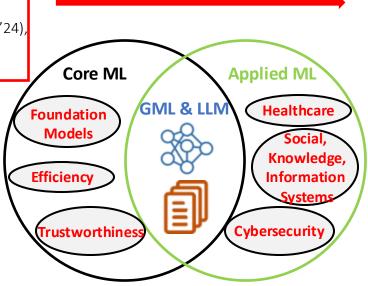
Data Efficiency: Self-supervised Learning, Few-shot Learning, Data Distillation Model Efficiency: Prompt Learning, Model Distillation/Pruning

FSRL (AAAI'20, 300+ citations), TENT (KDD'22), ParetoGNN (ICLR'23), NOSMOG (ICLR'23),

IAGPL (TMLR'25), MASS (ICML'25)

Robust Learning, Interpretable Learning

GAME (ICLR'23), G-FAME (WWW'23), CFExplainer (KDD'23), Dragon (ICLR'24), LIME (KDD'24)



Healthcare: Combat the Drug Crisis:

RxNet (CIKM'21, Best Paper Award) DHGNN (KDD'22, Best Paper Candidate)

Diet-ODIN (KDD'24)

Food & Nutrition, Drug Discovery:

MOPI-HFRS (KDD'25), MGNN (WWW'21), MOF-DDI (CIKM'23)

SOCIAL, KNOWLEDGE AND INFORMATION

SYSTEMS APPLICATION

Anomaly/Malware Detection:

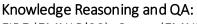
MSCRED (AAAI'19, 1100+ citations), MiST (WWW'19, Best Paper Candidate)

Rep2Vec (KDD'22), MetaHGNN (IJCAI'21)

Malicious Activity Detection:

MetaHG (NeurIPS'21), GraphBERT (ICDM'22)

LLM-HetGDT (ACL'25)

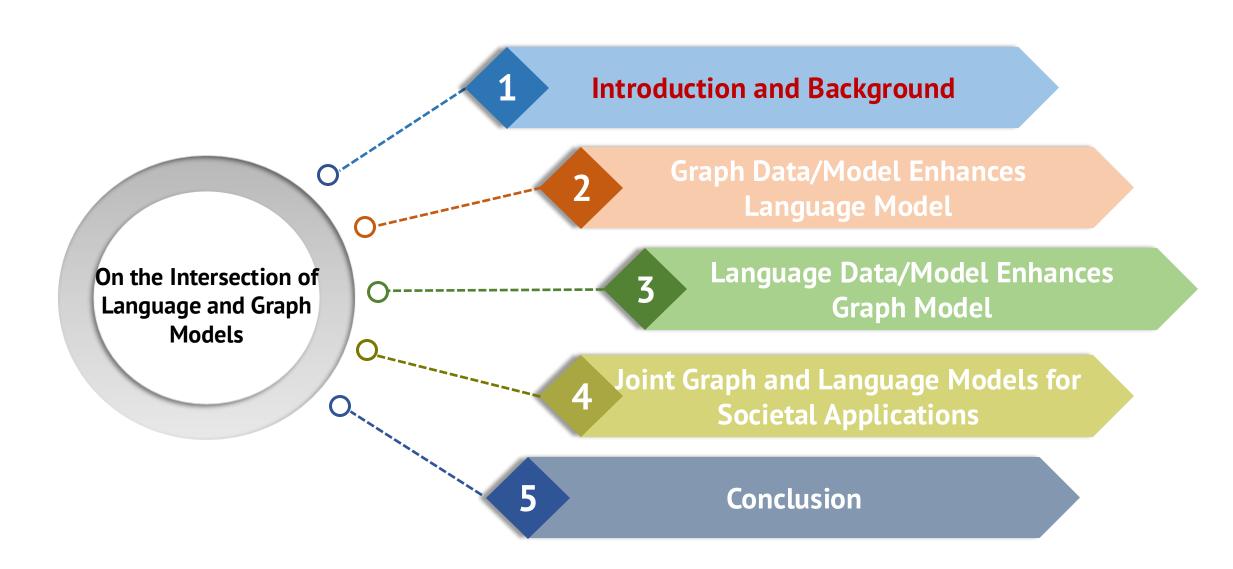


FIRE (EMNLP'20), Grape (EMNLP'22) SGCL (CIKM'22), NGQA (ACL'25)

Recommender Systems:

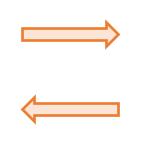
SHT (WWW'23), MMSSL (KDD'22), RecipeRec (IJCAI'22)

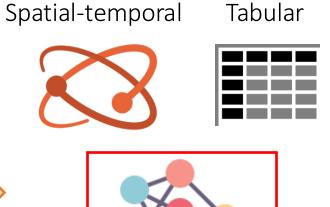
Outline



Introduction: Various Data in Real-world Applications

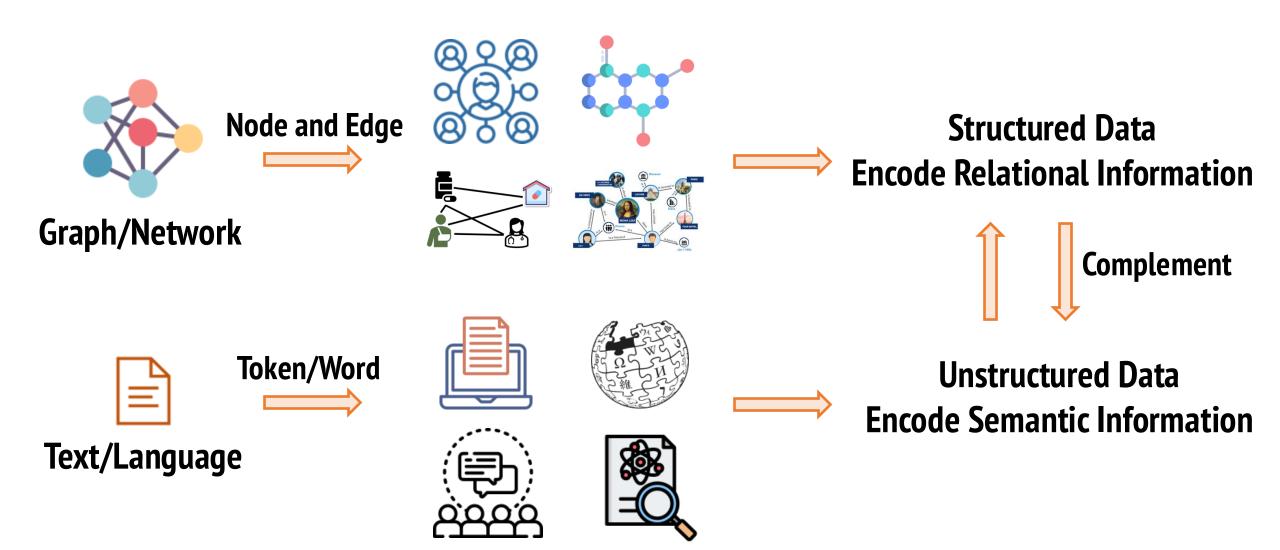
Knowledge System





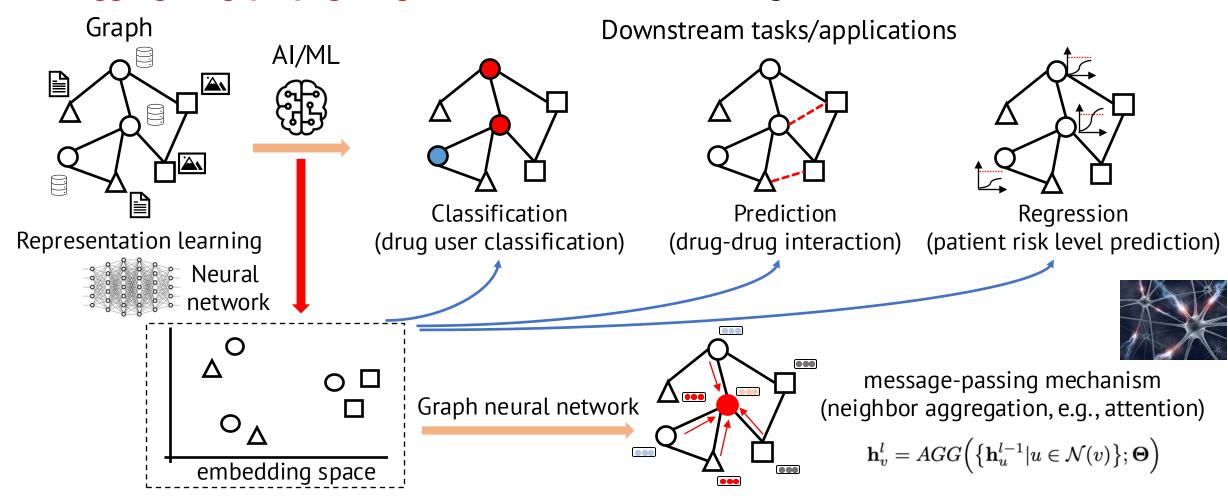
Graph/Network

Introduction: Graph (Network) and Text (Language) Data



Introduction: Graph Neural Networks (GNNs)

• GNNs learn representations of nodes by iteratively transforming and aggregating/propagating the features from their neighborhoods

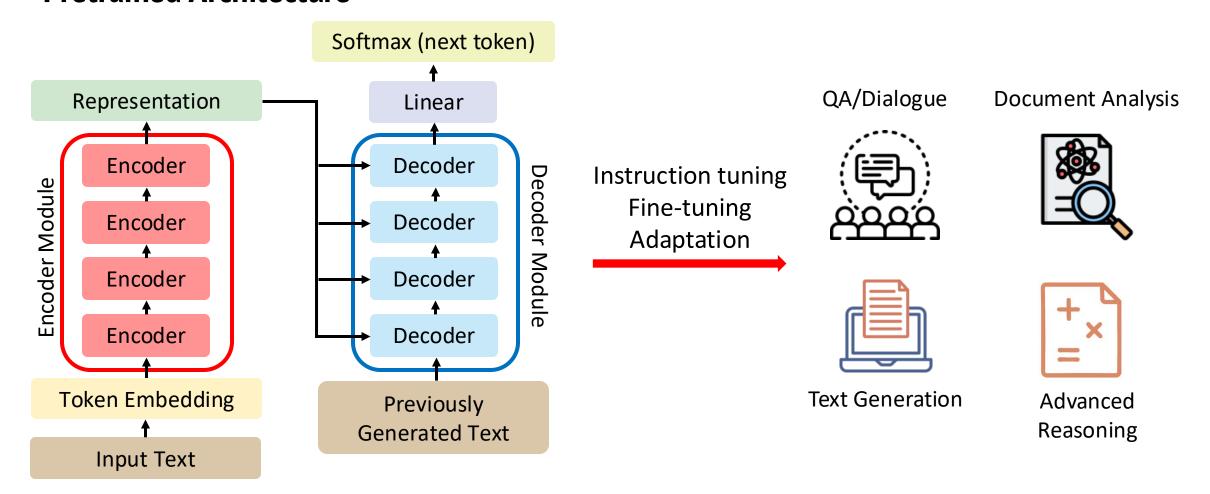


Introduction: Graph Neural Networks (GNNs)

- GCN (ICLR'16)
 - **©** Convolution Aggregation
- GSAGE (NeurIPS'17)
- GAT (ICLR'18)
 - **Attention Aggregation**
- HetGNN (PhD work, KDD'19)
 - The first GNN on Heterogeneous Graphs
- Our recent works: GFT (NeurIPS'24), GIT (ICML'25), GPM (ICML'25), G²PM (NeurIPS'25)
 - Graph Foundation Models Across Datasets/Tasks/Domains

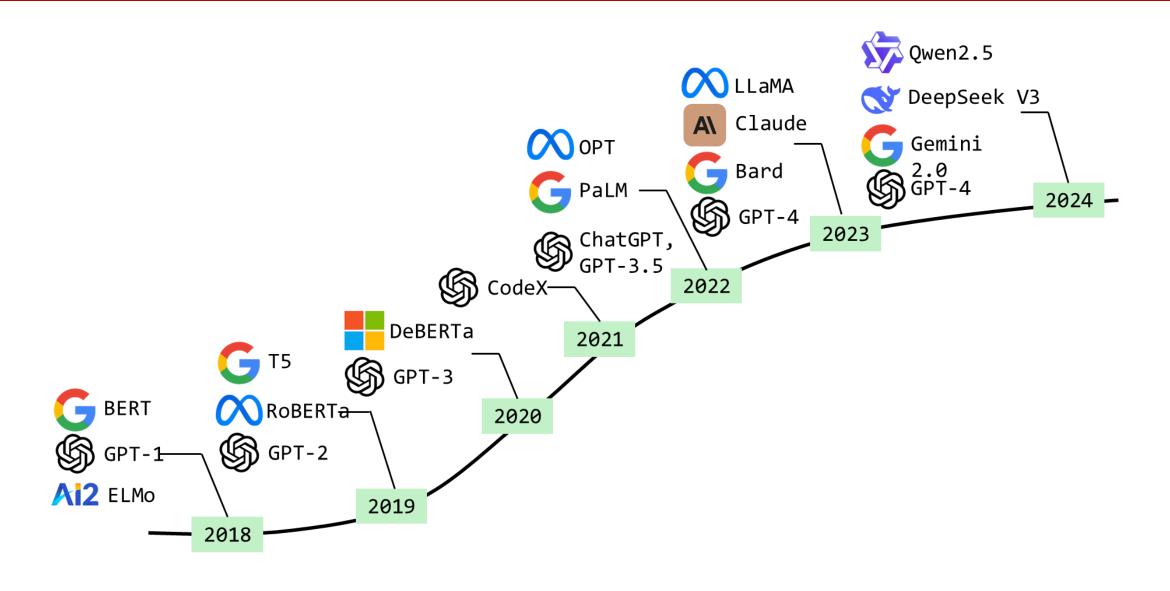
Introduction: Large Language Model (LLMs)

Pretrained Architecture

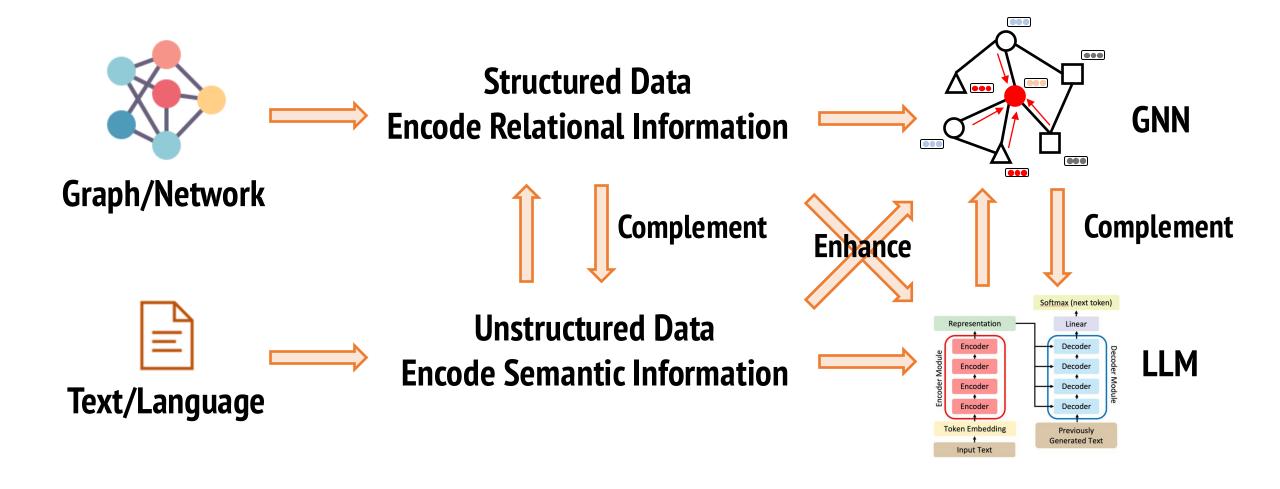


Transformer

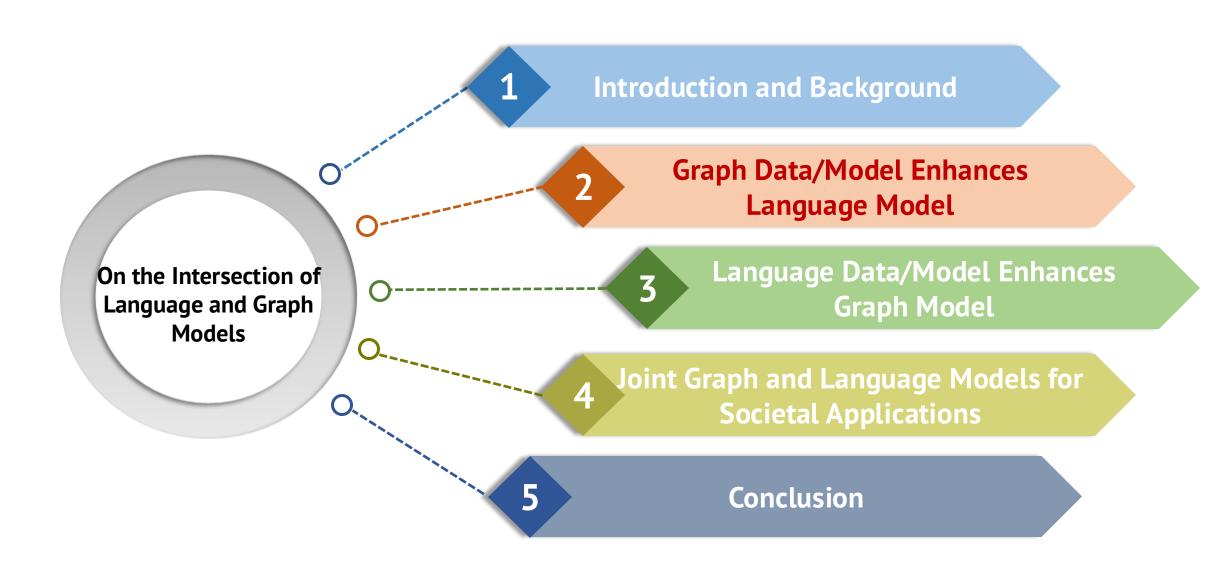
Introduction: Large Language Model (LLMs)



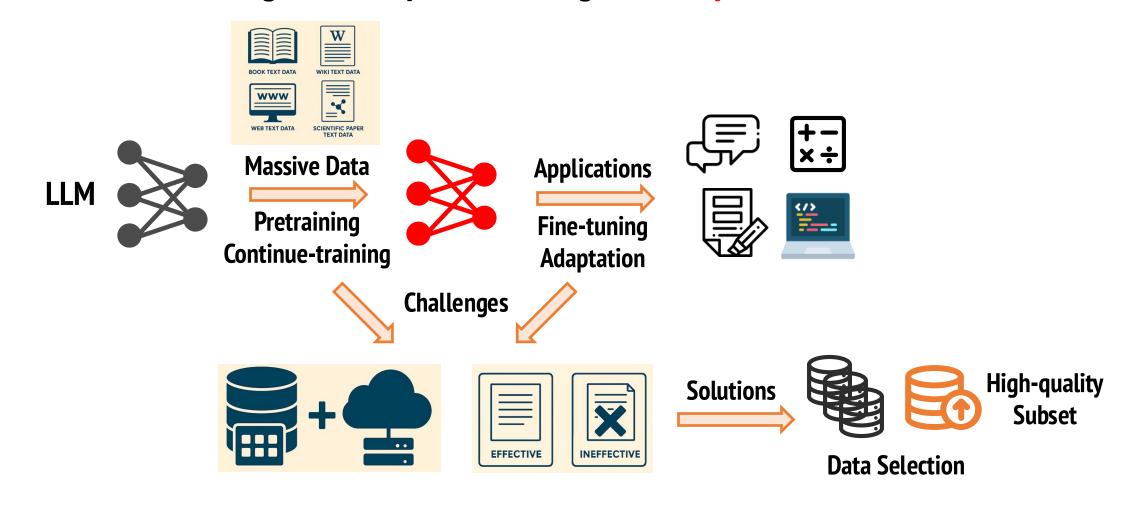
Introduction: Graph Model and Language Model



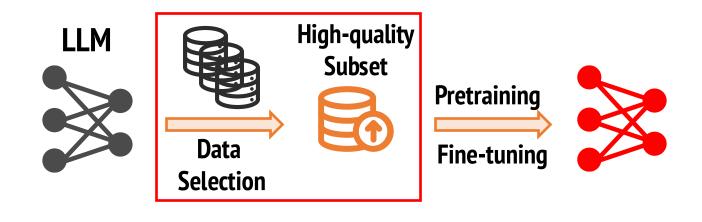
Outline



• Data Selection for Pretraining LLMs: Improve Training Efficiency and Effectiveness



Data Selection for Pretraining LLMs: Improve Training Efficiency and Effectiveness

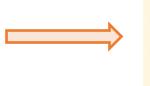


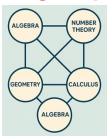
CONTENT: Find the greatest value of x such that $\frac{x^2-x-90}{x-9}=\frac{2}{x+7}$. The expression when simplified by factoring the numerator transforms into: $\frac{(x-9)(x+10)}{x-9}=\frac{2}{x+7}$. Canceling the (x-9) factor on both sides, provided $x\neq 9$, we get: $x+10=\frac{2}{x+7}$. Multiplying both sides by (x+7) to eliminate the fraction yields: (x+10)(x+7)=2. Expanding and rearranging this equation results in: $x^2+17x+70=2 \implies x^2+17x+68=0$. Factoring the quadratic gives: (x+4)(x+13)=0. The solutions to this equation are x=-4 and x=-13. The greatest of these solutions is $\boxed{-4}$.

Skill Extraction Example

SKILLS: Equation solving, Factoring polynomials, Fraction manipulation, Quadratic equations, Root identification, Expression simplification, Algebraic transformation, Polynomial division, Inequality consideration, Solution verification

Prior methods: e.g., RHO-1 [NeurIPS'24], AutoDS [ICLR'24] Limitation: concentrate on general domains while neglecting the underlying knowledge and their interrelations of specific domain data, such as mathematical skills for advanced reasoning capabilities. Assumption: a data point reflecting (1) more important math skills or (2) more compositional information of math skills should receive a higher quality score.

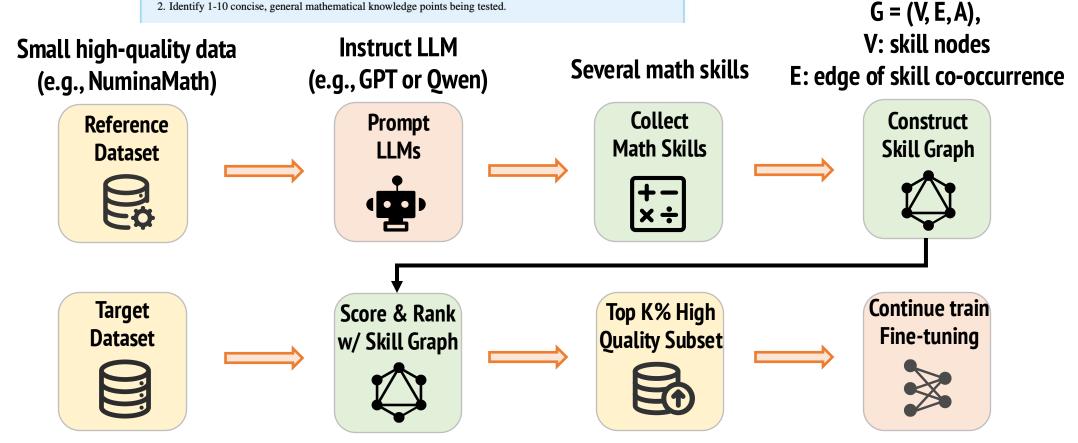




Prompt Template to Extract Skills

Please assume the role of a math teacher and analyze the provided question with the following steps:

- 1. Determine if the text involves mathematical knowledge, reasoning, or problem-solving skills. Respond with
- 2. Identify 1-10 concise, general mathematical knowledge points being tested.



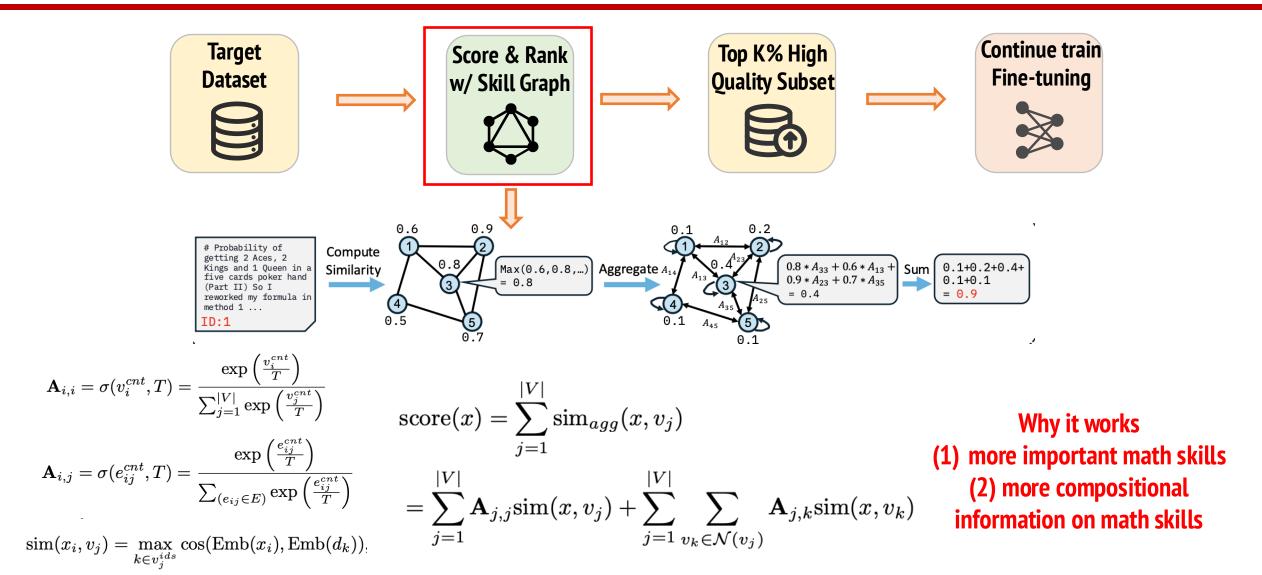
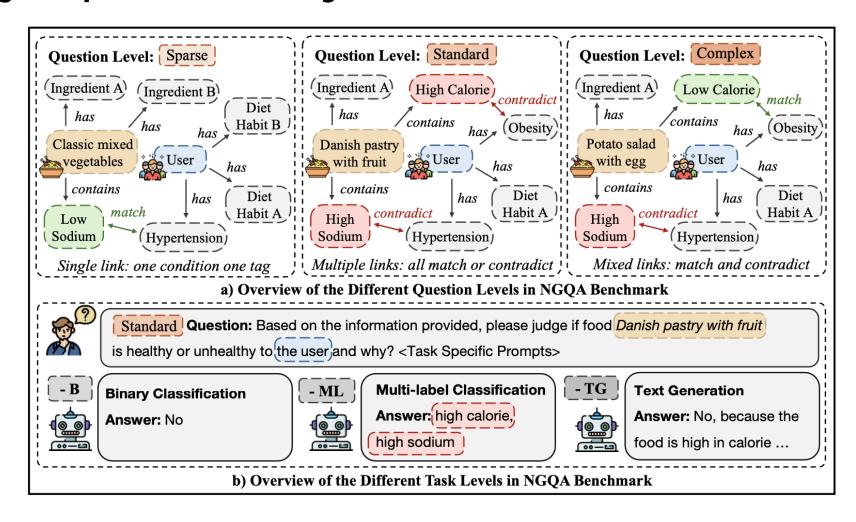


Table 2. The main experimental results. TinyLlama-1.1B and Mistral-7B are continuously pretrained using both the original and selected subsets of OpenWebMath, OpenWebMath-pro, and Jiuzhang3.0. The **bolded** entries indicate the best results within each setting. * indicates that results are from ProX (Zhou et al., 2024a)

Dataset	Method	Unique Tokens	Trained Tokens	GSM8K	MATH	SVAMP	ASDiv	MAWPS	TAB	MQA	MMLU STEM	SAT MATH	Avg.
					TinyL	lama-1.1	.В						
w/o o	continual pr	etraining		2.7	2.8	10.9	17.9	20.5	12.5	14.0	16.3	21.9	13.3
	_	14.6B	14.6B	5.2	3.0	20.7	31.4	41.0	14.6	10.1	19.5	37.5	20.3
	$RULE^*$	6.5B	15B	4.5	2.8	17.5	29.4	39.3	15.1	12.4	19.4	25.0	18.4
	RHO-1*	14.6B	9B	7.1	5.0	23.5	41.2	53.8	-	18.0	-	-	-
OpenWebMath	ProX	5.1B	14.6B	8.6	3.0	23.8	40.2	51.6	19.6	14.9	26.1	25.0	23.6
	DSIR	4.9B	14.6B	5.5	2.6	24.1	37.8	54.3	16.9	12.1	25.4	22.3	22.1
	AutoDS	4.9B	14.6B	7.3	2.4	22.9	39.2	52.7	18.4	13.8	23.2	24.1	22.7
	MASS	4.9B	14.6B	9.0	4.4	24.9	41.4	54.8	21.5	13.9	20.3	25.0	23.9
	-	5.1B	14.6B	8.6	3.0	23.8	40.2	51.6	19.6	14.9	26.1	25.0	23.6
OpenWebMath	DSIR	3B	14.6B	8.8	3.2	24.1	41.5	53.1	18.9	14.3	27.6	27.5	24.4
-pro	AutoDS	3B	14.6B	9.1	4.5	22.4	40.8	54.3	23.2	13.1	26.5	28.0	24.7
	MASS	3B	14.6B	10.2	5.8	23.8	42.3	57.9	25.3	15.3	27.0	34.4	26.9
	-	3.4B	6.8B	22.3	19.0	46.4	60.1	73.2	29.6	19.1	24.0	34.4	36.4
Jiuzhang3.0	DSIR	2.4B	6.8B	24.5	21.3	48.2	63.9	74.4	28.8	19.2	22.1	33.6	37.3
Juznangs.0	AutoDS	2.4B	6.8B	26.7	20.8	51.3	66.7	73.5	31.1	19.3	22.4	32.8	38.3
	MASS	2.4B	6.8B	30.1	24.8	52.5	69.1	80.7	32.9	20.4	22.7	34.4	40.8
					Mis	tral-7B							
w/o o	continual pr	etraining		41.1	10.6	64.9	68.5	87.3	54.8	33.9	49.9	65.6	53.0
On an Wala Mada	_	14.4B	9.6B	44.5	19.0	60.6	68.4	87.8	50.5	44.5	50.9	56.2	53.6
OpenWebMath	MASS	4.8B	9.6B	47.7	23.2	64.6	74.7	90.5	55.7	50.7	52.6	65.6	58.4
OpenWebMath	-	5.1B	5.1B	47.1	21.8	63.2	73.7	89.5	58.2	42.6	52.2	56.2	56.1
-pro	MASS	3B	5.1B	53.2	25.6	67.0	76.8	90.4	57.6	51.8	54.5	81.2	62.0
Ijuzhong2 0	-	3.8B	3.8B	66.4	39.4	82.9	85.9	90.8	35.3	61.8	40.1	50.0	61.4
Jiuzhang3.0	MASS	2.7B	3.8B	70.0	43.8	84.3	85.7	93.7	35.7	63.5	46.9	65.6	65.5

Graph Data/Model Enhances Language Model: More Study

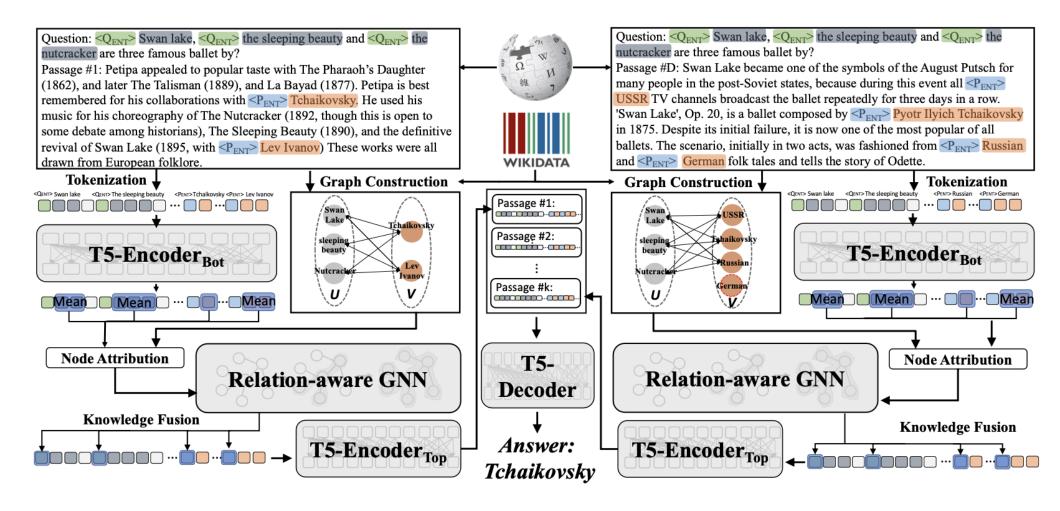
QA: Knowledge Graph as Retrieval Augmentation for LLMs



NGQA: A Nutritional Graph Question Answering Benchmark for Personalized Health-aware Nutritional Reasoning, ACL 2025

Graph Data/Model Enhances Language Model: More Study

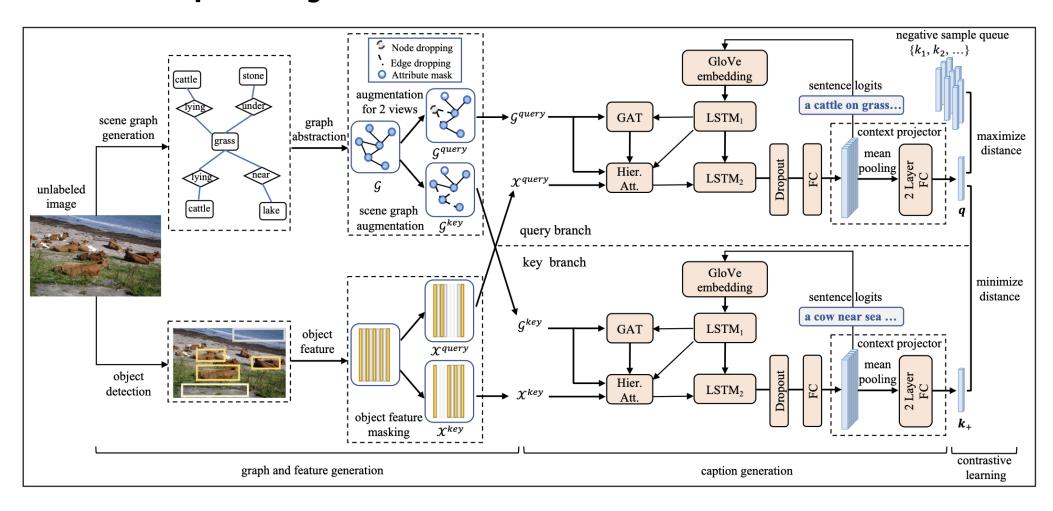
QA: Graph as Augmented Information for LLMs



Knowledge Graph Enhanced Passage Reader for Open-domain Question Answering, EMNLP 2022

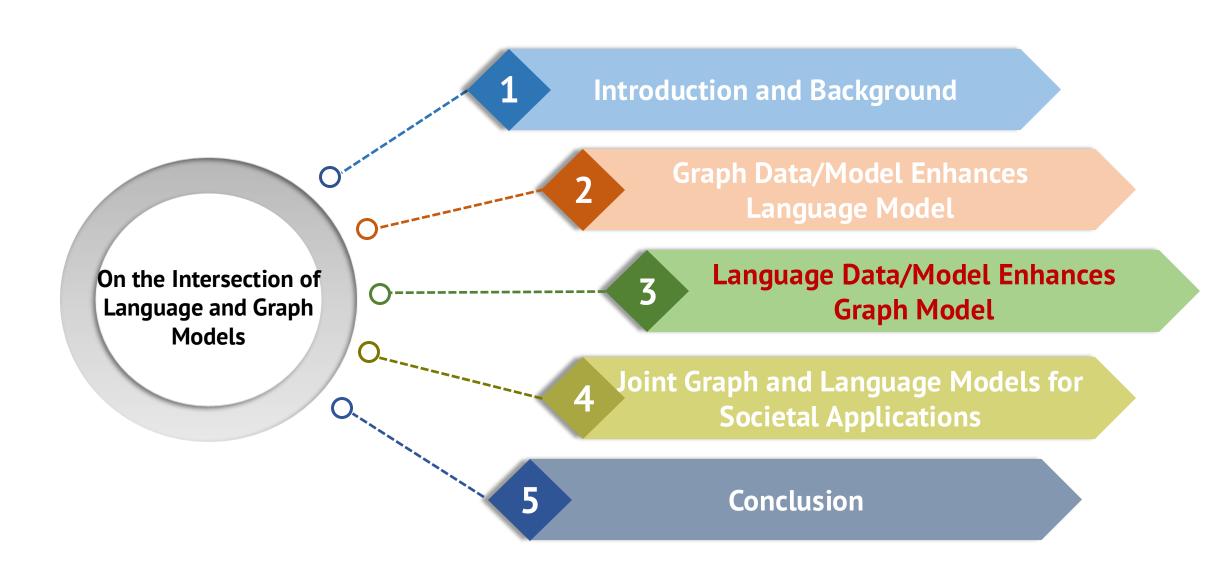
Graph Data/Model Enhances Language Model: More Study

Text Generation: Graph as Augmented Data for LLMs

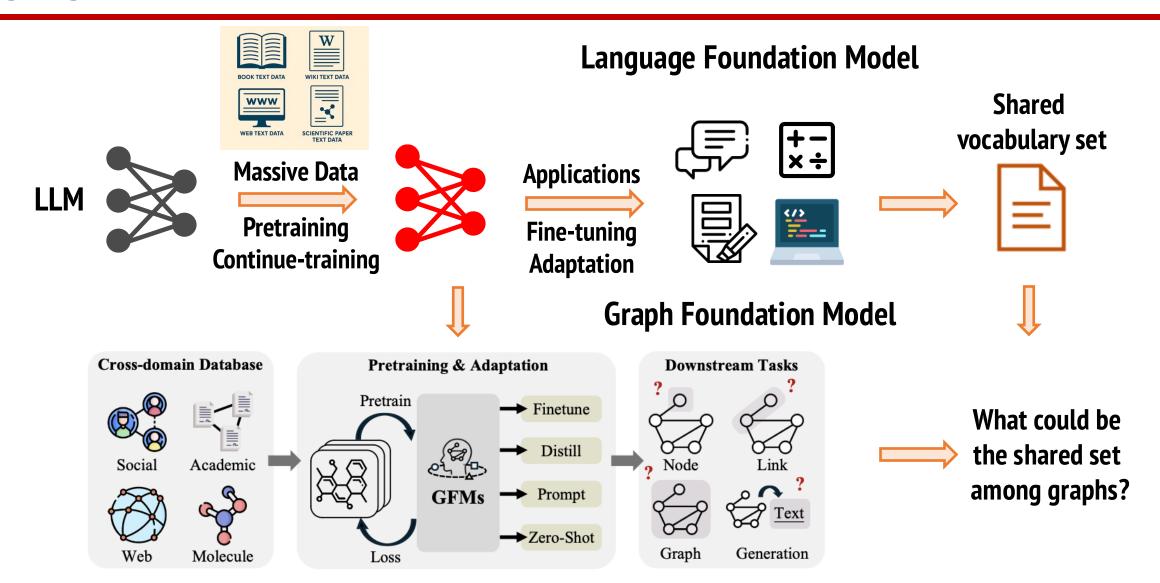


Look Twice as Much as You Say: Scene Graph Contrastive Learning for Self-Supervised Image Caption Generation, CIKM 2022

Outline

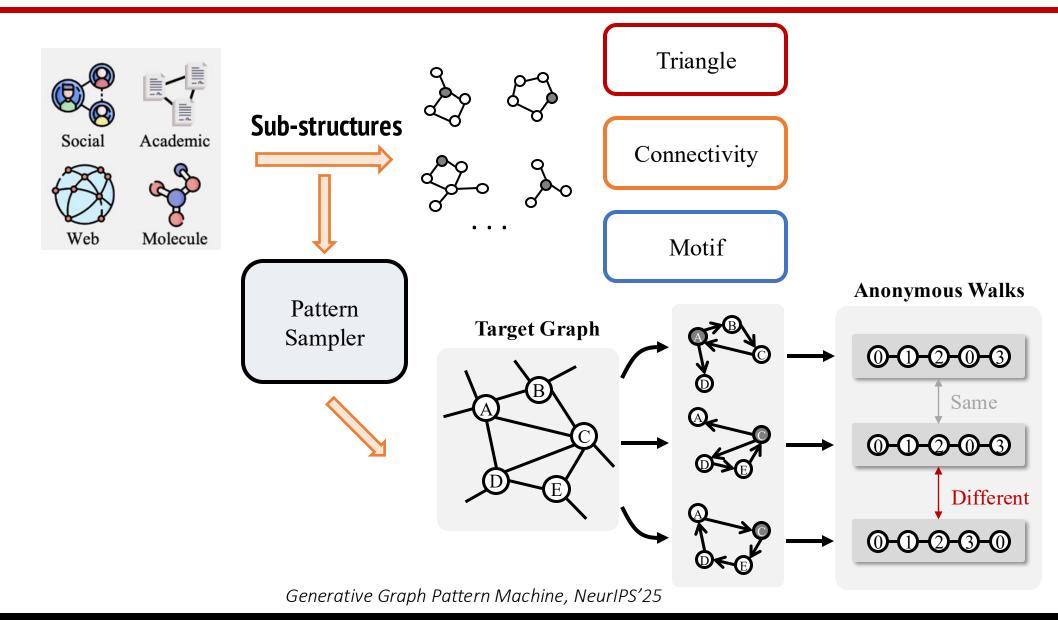


Language Data/Model Enhances Graph Model: Foundation Model

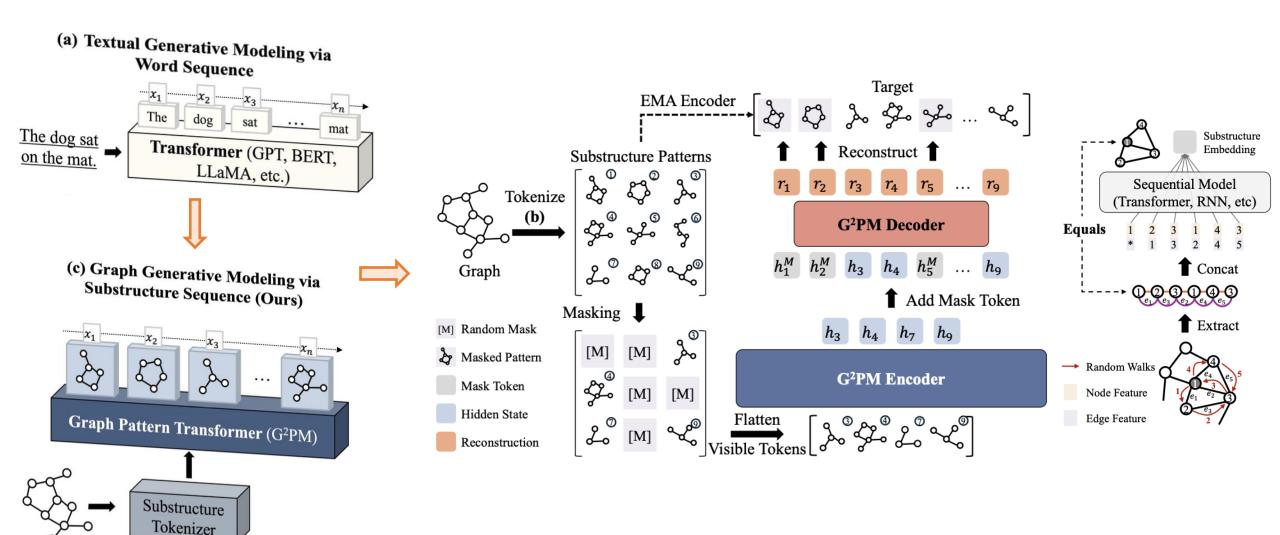


Generative Graph Pattern Machine, NeurIPS'25

Language Data/Model Enhances Graph Model: Graph Foundation Model



Language Data/Model Enhances Graph Model: Graph Foundation Model



Language Data/Model Enhances Graph Model: Graph Foundation Model

	_	Pubmed	Photo	Computers	WikiCS	Flickr	Arxiv	Products	A.R.
	# Nodes # Edges	19,717 88,648	7,650 238,162	13,752 491,722	11,701 431,206	89,250 899,756	169,343 2,315,598	2,449,029 123,718,024	-
Supervised	GAT [55]	83.1 ± 0.3	91.9 ± 0.5	87.9 ± 0.5	76.9 ± 0.8	50.7 ± 0.3	72.10 ± 0.13	79.45 ± 0.59	5.7
	GPM [62]	84.7 ± 0.1	92.7 ± 0.3	90.0 ± 0.4	80.2 ± 0.4	52.2 ± 0.2	72.89 ± 0.68	82.62 ± 0.39	1.3
Contrastive	GCA [78]	83.3 ± 0.5	92.4 ± 0.2	87.1 ± 0.2	77.4 ± 0.1	49.0 ± 0.1	71.23 ± 0.09	78.39 ± 0.03	6.9
	BGRL [48]	83.9 ± 0.3	92.5 ± 0.2	88.2 ± 0.2	77.5 ± 0.8	49.7 ± 0.2	70.51 ± 0.03	78.59 ± 0.02	5.7
	CCA-SSG [72]	81.8 ± 0.5	91.8 ± 0.6	88.6 ± 0.3	75.3 ± 0.8	47.5 ± 0.2	71.24 ± 0.20	75.27 ± 0.05	8.6
Generative	GraphMAE [21]	81.0 ± 0.5	92.0 ± 0.3	89.2 ± 0.5	77.1 ± 0.5	50.5 ± 0.1	71.75 ± 0.17	78.89 ± 0.01	6.0
	GraphMAE 2 [22]	81.3 ± 0.4	92.4 ± 0.2	88.3 ± 0.9	77.6 ± 0.4	50.4 ± 0.1	71.89 ± 0.03	79.33 ± 0.01	5.4
	S2GAE [47]	80.1 ± 0.5	91.4 ± 0.1	85.3 ± 0.1	75.3 ± 0.8	48.1 ± 0.8	67.77 ± 0.36	76.70 ± 0.03	10.3
	Bandana [76]	83.5 ± 0.5	91.4 ± 0.7	87.7 ± 0.2	77.3 ± 0.3	47.9 ± 0.6	71.09 ± 0.24	77.68 ± 0.05	8.1
	G ² PM w/o Pretrain	83.9 ± 0.2	92.8 ± 0.2	87.1 ± 0.3	78.5 ± 0.4	50.7 ± 0.1	69.64 ± 0.08	76.90 ± 0.16	6.0
	G ² PM	84.3 \pm 0.1	92.9 ± 0.2	88.8 ± 0.3	79.0 \pm 0.4	51.0 ± 0.0	72.31 \pm 0.07	80.56 \pm 0.01	2.0

Source	Ar	xiv	HIV			
Target	Products	HIV	Arxiv	PCBA		
GNN [55, 67] GPM [62]	78.3 (1.2 \(\psi\) 82.0 (0.6 \(\psi\))	70.1 (5.7 \(\psi\) 74.3 (2.7 \(\psi\))	71.1 (1.0 \(\psi\) 71.4 (1.5 \(\psi\)	71.9 (1.6 ↑) 76.4 (1.3 ↑)		
BGRL [48] GraphMAE [21]	78.8 (0.2 ↑) 77.5 (1.4 ↓)	72.5 (3.8 \(\)) 74.7 (3.1 \(\))	68.6 (1.9 \(\psi\) 69.9 (1.9 \(\psi\))	72.9 (0.6 \(\psi\) 73.4 (0.2 \(\psi\)		
G^2PM	81.3 (0.7 ↑)	76.8 (1.9 ↓)	72.6 (0.3 ↑)	77.9 (2.3 ↑)		

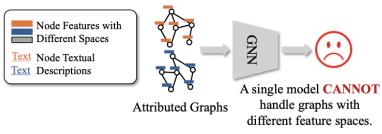
			_				-		
		HIV	PCBA	Sider	MUV	ClinTox	IMDB-B	REDDIT-M12K	A.R.
	# Graphs	41,127	437,929	1,427	93,087	1,478	1,000	11,929	-
	# Nodes	\sim 25.5	$\sim \!\! 26.0$	~33.6	\sim 24.2	$\sim \!\! 26.1$	$\sim \! 19.8$	~391.4	-
	# Edges	\sim 27.5	\sim 28.1	\sim 70.7	\sim 52.6	~55.5	~ 193.1	~913.8	-
C	GIN [67]	75.8 ± 0.8	70.3 ± 0.3	57.7 ± 0.8	74.4 ± 0.9	83.4 ± 0.6	73.3 ± 0.5	39.4 ± 1.4	6.3
Supervised	GPM [62]	77.0 ± 0.9	75.1 ± 0.3	59.0 ± 0.0	74.6 ± 1.4	82.4 ± 0.3	82.7 ± 0.5	43.1 ± 0.3	3.0
	GraphCL [69]	75.5 ± 0.3	72.4 ± 2.1	57.3 ± 0.9	68.3 ± 2.6	82.9 ± 0.3	71.1 ± 0.4	37.9 ± 2.4	8.0
Contrastive	JOAO [70]	76.8 ± 0.3	73.4 ± 1.5	58.5 ± 0.5	72.3 ± 1.0	82.2 ± 0.3	70.2 ± 3.1	39.9 ± 0.6	6.0
Contrastive	MVGRL [18]	75.7 ± 0.7	70.4 ± 2.1	60.5 ± 0.6	71.5 ± 1.2	83.6 ± 0.2	74.2 ± 0.7	39.5 ± 1.8	5.7
	InfoGCL [66]	77.3 ± 0.6	74.6 ± 0.7	58.7 ± 0.7	73.4 ± 1.0	80.3 ± 0.7	75.1 ± 0.9	39.3 ± 0.5	5.4
	GraphMAE [21]	77.8 ± 0.9	73.2 ± 1.4	60.6 ± 0.0	73.7 ± 0.8	84.8 ± 0.5	75.5 ± 0.7	37.6 ± 2.5	4.1
Generative	S2GAE [47]	75.6 ± 0.8	72.9 ± 0.0	58.0 ± 0.9	71.6 ± 0.8	80.6 ± 0.4	75.8 ± 0.6	37.9 ± 1.8	7.0
Generative	G ² PM w/o Pretrain	69.8 ± 0.1	68.4 ± 0.0	58.8 ± 0.3	66.3 ± 1.4	80.0 ± 1.8	80.0 ± 0.8	37.5 ± 0.3	8.3
	G^2PM	78.7 ± 0.1	75.6 ± 0.1	61.2 ± 0.2	75.7 ± 0.4	86.6 ± 0.8	83.0 ± 0.8	41.8 ± 0.3	1.0

Pretrain	Arxiv + FB15K237 + ChemBL						
Downstream	Arxiv	FB15K237	HIV				
	(Academia)	(Knowledge Graph)	(Molecule)				
BGRL [48]	70.8 ± 0.2	86.5 ± 0.3	68.5 ± 1.6				
GraphMAE [21]	70.3 ± 0.3	87.8 ± 0.4	64.1 ± 0.5				
OFA [32]	71.4 ± 0.3	84.7 ± 1.3	72.0 ± 1.6				
GFT [60]	71.9 ± 0.1	89.3 ± 0.2	72.3 ± 2.0				
G^2PM	72.5 ± 0.1	88.9 ± 0.5	74.1 ± 1.3				

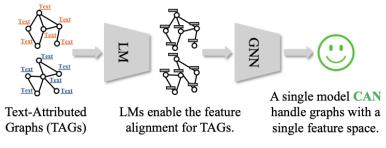
Generative Graph Pattern Machine, NeurIPS'25

Language Data/Model Enhances Graph Model

LLM as Text/Attribute Generation for GNNs



(a) Feature Misalignment Across Graphs



(b) Language Models (LMs) Enable Feature Alignment

We need to collect graphs from scratch, focusing on those with inherent node semantics, such as citation networks.

Can we convert existing graphs to textattributed graphs using LLMs?

(c) Limitation: How To Collect Text-Attributed Graphs?

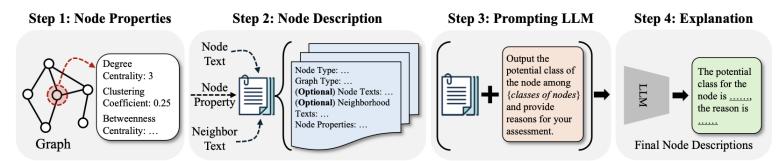


Figure 2: The framework of our topology-aware node description synthesis (TANS).

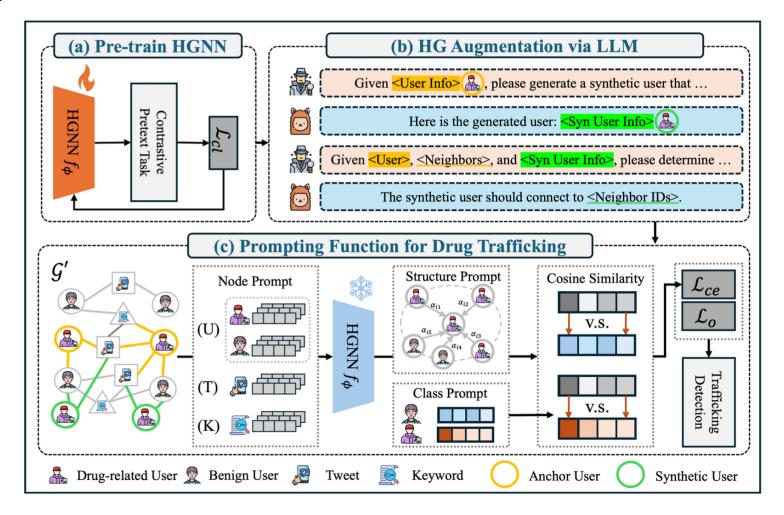
Step 2: Generate Basic Node Descriptions					
Prefix	Given a node from a {Graph Type} graph, where the node type is {Node Type} with {Node Number} nodes, and the edge type is {Edge Type} with {Edge Number} edges.				
Node Text (Optional)	The original node description is {Original Textual Descriptions}.				
Neighbor Text (Optional)	The following are the textual information of $\{k\}$ connected nodes. The descriptions are: {Textual Descriptions of Selected Neighborhoods}.				
Node Property	The value of {Node Property} is {Value of The Given Property}, ranked as {Rank of The Node}% among {Node Number} nodes.				
Step 3: Prompting LLMs					
Suffix	Output the potential $\{k\}$ classes of the node and provide reasons for your assessment. The classes include {Classes of Nodes}. Your answer should be less than 200 words.				

Table 2: Prompt templates.

Can LLMs Convert Graphs to Text-Attributed Graphs? NAACL 2025

Language Data/Model Enhances Graph Model

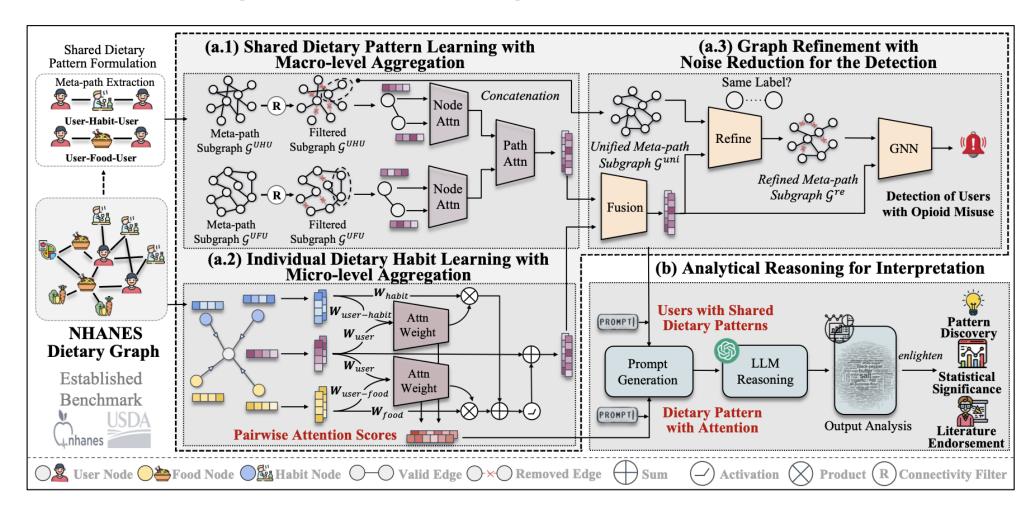
LLM as Data Augmentation for GNNs



LLM-Empowered Class Imbalanced Graph Prompt Learning for Online Drug Trafficking Detection, ACL 2025

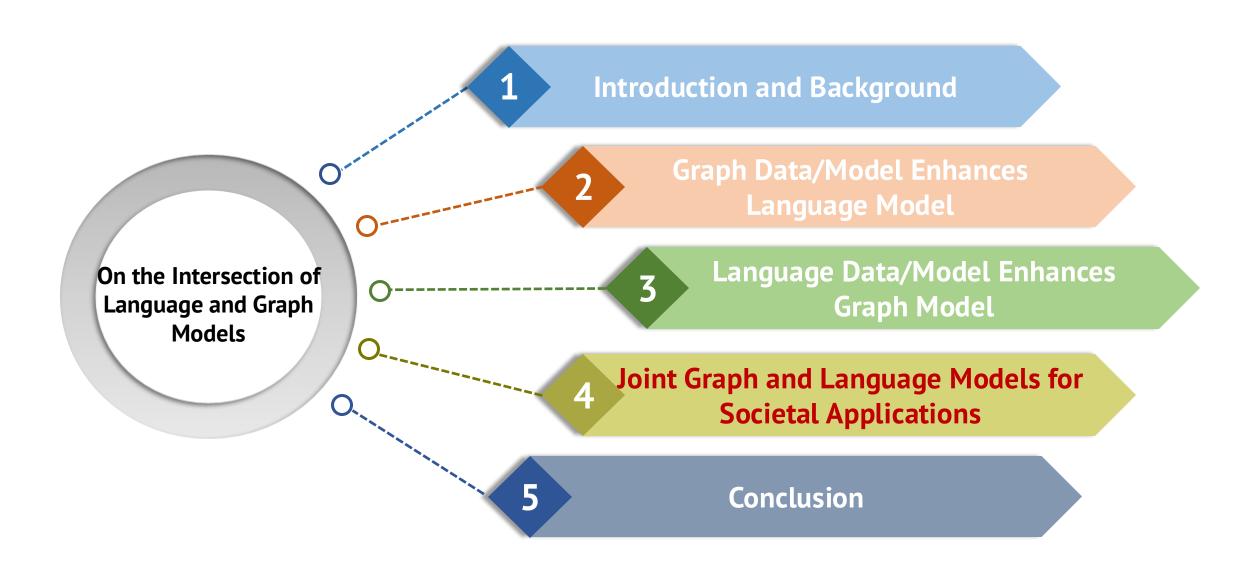
Language Data/Model Enhances Graph Model

• Healthcare: LLM as Interpretator for GNN Output



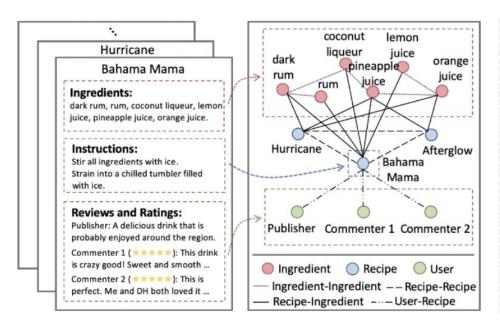
Diet-ODIN: A Novel Framework for Opioid Misuse Detection with Interpretable Dietary Patterns, KDD 2024

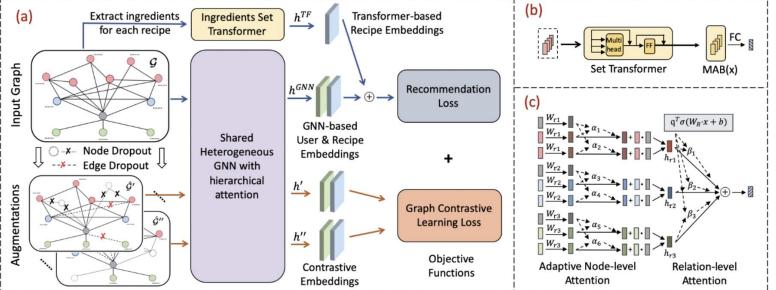
Outline



Joint Graph and Language Models for Various Applications

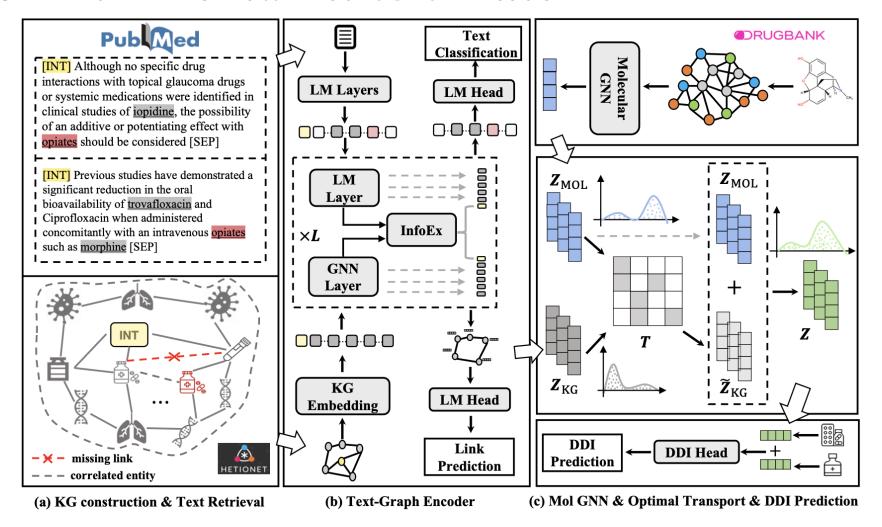
Recommender System: GNN and LLM as Multi-modal Data Encoder





Joint Graph and Language Models for Various Applications

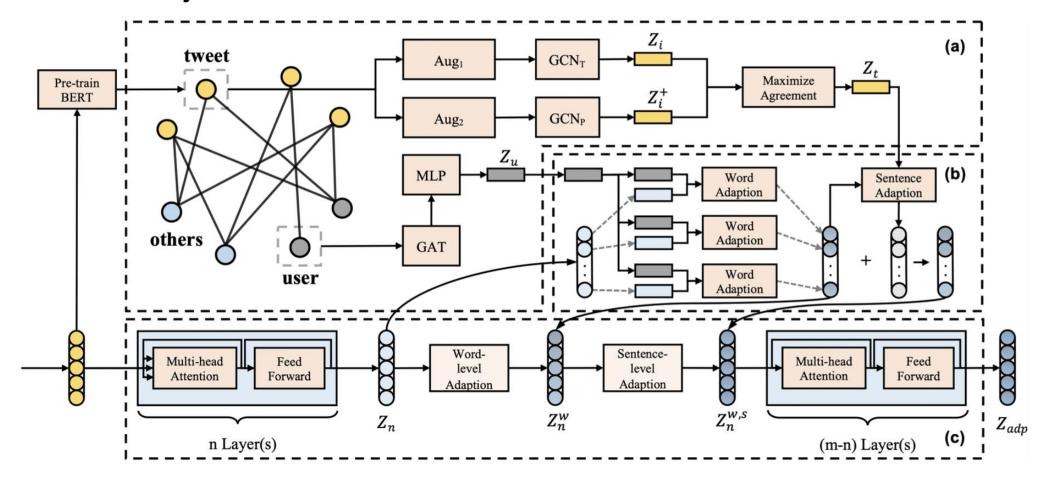
Healthcare: GNN and LLM as Multi-modal Data Encoder



A Multi-Modality Framework for Drug-Drug Interaction Prediction by Harnessing Multi-source Data, CIKM 2023

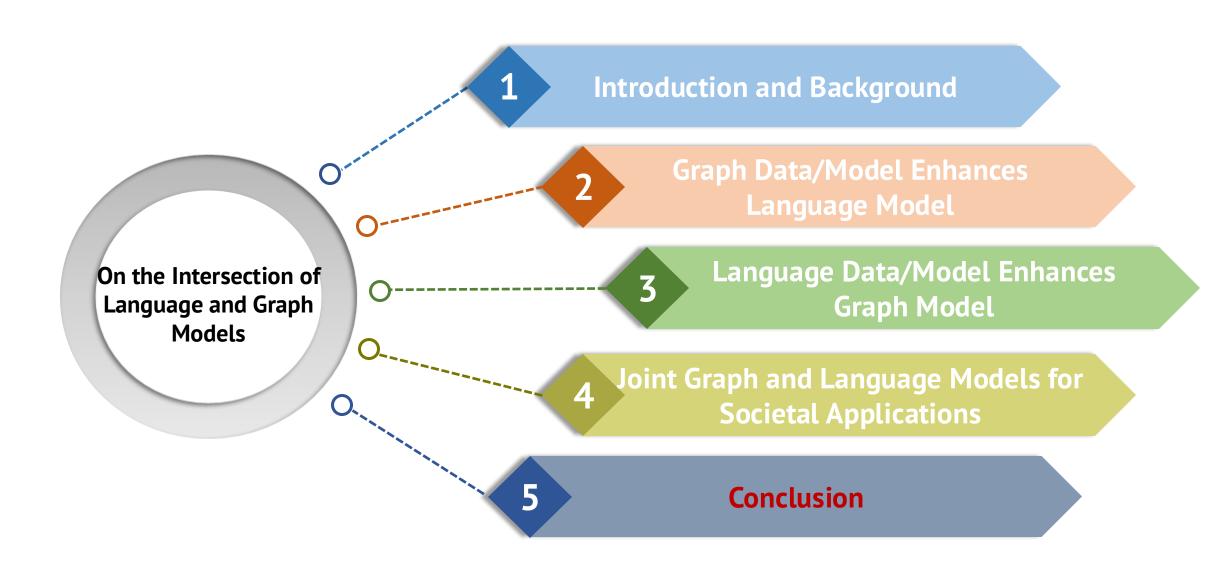
Joint Graph and Language Models for Various Applications

Social Network Analysis: GNN and LLM as Multi-modal Data Encoder



GraphBERT: Bridging Graph and Text for Malicious Behavior Detection on Social Media, ICDM 2022

Outline



Conclusion

- Graph Data/Model Improves Language Model
 - **MASS: LLM for Advanced Reasoning**
 - **Graph as Augmented Information/Data for LLMs in QA, Text Generation, etc.**
- Language Data/Model Improves Graph Model
 - **GROWN** Graph Foundation Model
 - **US LLM as Text/Attribute Generation or Data Augmentation for GNNs, etc.**
- Joint Graph-Language Model for Societal Applications
 - **Recommender Systems, Social Network Analysis, Healthcare, etc.**

Feel free to contact me for any questions!

