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Abstract—Modern e-commerce platforms must balance short-
term engagement-CTR with downstream outcomes-CVR, while
ensuring fairness across user cohorts, long-tail queries, and
strict latency requirements. Prior frameworks, such as UWM3R,
introduced multi-task uncertainty weighting and hybrid pairwise
ranking, but lacked fine-grained semantic alignment, cohort
personalization, or explicit exposure-diversity control. We present
CTMR, a Transformer-based multi-objective re-ranking frame-
work that integrates: field-aware positional encoders for Adobe
creative content product query text, Late-Interaction MaxSim
features for scalable token matching, Cohort-Conditioned Hy-
perNetworks to adapt expert routing and CTR-CVR mixing,
inverse-propensity-weighted pairwise debiasing, and an exposure-
diversity regularizer. On 4M query–product interactions from
Adobe creative content marketplace, CTMR improves AUC,
NDCG, MAP, MRR over strong baselines, reduces long-tail
exposure Gini. CTMR demonstrates that responsible and scalable
multi-objective ranking can advance both business goals and user
experience in interactive e-commerce search.

Index Terms—E-commerce search, multi-task learning, trans-
former ranking, personalization, debiasing, diversity-aware re-
trieval

I. INTRODUCTION

E-commerce platforms increasingly serve billions of prod-
ucts to highly diverse users, where relevance depends not
only on short-term clicks but also on downstream conversions,
such as purchases, downloads, or subscriptions. Optimizing
exclusively for CTR risks over-surfacing clickbait or low-
value items, while optimizing only for CVR under-explores
the long tail and hurts engagement. A modern ranker must
balance these objectives while ensuring fairness, debiasing for
presentation bias, and meeting latency constraints under 200
ms.

While recent multi-task learning (MTL) models (e.g.,
ESMM [2], MMoE [3], PLE [4]) jointly model CTR and CVR,
they often struggle with task interference and calibration.
Our previous framework, UWM3R [5], introduced uncertainty
weighting and hybrid pairwise ranking, but lacked token-
level semantic modeling, cohort-adaptive routing, or explicit
exposure-diversity control.

In this work, we propose CTMR, a new Transformer
Multi-Objective Ranker designed for responsible and scalable
e-commerce creative content products ranking. Unlike our
previous work [5], [6], [7], CTMR is motivated by three
principles:

• Semantic alignment: Field-aware positional encoders
and Late-Interaction features capture token-level seman-
tics with efficiency.

• Cohort personalization: HyperNetworks conditioned on
cohort embeddings dynamically generate task mixing and
expert routing.

• Responsible optimization: Inverse-propensity weighting
debiases training, and a diversity regularizer prevents
long-tail neglect.

II. RELATED WORK

A. Multi-Task Learning for CTR–CVR Modeling

Joint modeling of click-through rate (CTR) and conversion
rate (CVR) is widely studied in e-commerce recommendation.
Early stopping models such as ESMM [2] address sample
selection bias, while MMoE [3] introduces expert gating for
task-specific representation learning. PLE [4] further mitigates
negative transfer by disentangling task-shared and task-specific
features. Recent advances explore adaptive gating [8] and
cross-domain MTL [9] to improve generalization. Despite
these improvements, most approaches rely on static routing
and cannot account for heterogeneous user cohorts. CTMR
extends this line of work by introducing cohort-conditioned
routing, dynamically generating task mixtures that adapt to
user segment characteristics, thereby reducing task conflict and
improving personalization.

B. Transformers for Information Retrieval

Transformer-based models have become the backbone of
modern retrieval. Cross-encoders such as BERT rankers [10],
[11] achieve strong semantic alignment but face prohibitive
latency in production. Late-interaction architectures like Col-
BERT [12] and its successors [13], [14] balance efficiency
with accuracy through token-level matching. Field-aware en-
coders [15] and knowledge-augmented models [16] further
improve retrieval quality in structured domains. CTMR builds
on this foundation by employing field-aware Transformer en-
coders combined with MaxSim late interaction, enabling fine-
grained semantic matching across diverse query and product
fields while maintaining scalability to industrial traffic.



C. Fairness and Debiasing in Ranking

Bias in click logs is a long-standing challenge in information
retrieval. Traditional approaches include learning to rank [1]
position-based models (PBM) [17], user browsing models [18],
and propensity re-weighting [19]. More recent works leverage
adversarial training [20] and causal inference [21] to mitigate
exposure bias and cohort skew. However, many solutions
decouple debiasing from ranking optimization, leading to sub-
optimal integration. CTMR advances this line by embed-
ding inverse-propensity scoring (IPS) directly into pairwise
RankNet optimization, while simultaneously applying multi-
scale diversity regularization to improve long-tail exposure
and fairness. This unified treatment ensures both robustness
to bias and improved user experience in e-commerce ranking.

A preliminary non-archival version of this work was also
presented at the RS4SD Workshop co-located with CIKM
2025 [22].

III. METHODOLOGY

A. Architecture Overview

The Task-Oriented Multi-Objective Ranking (CTMR)
framework represents a novel paradigm in e-commerce search
re-ranking that addresses the fundamental challenges of multi-
task learning, positional bias correction, and diversity opti-
mization in a unified architecture. Unlike traditional ranking
systems that treat these challenges independently, CTMR
operates as a cohesive second-stage re-ranker that processes
top-K retrieved candidates through an integrated pipeline of
specialized neural components.

As illustrated in Fig. 1, CTMR’s architecture consists of five
synergistic modules that collectively optimize for both imme-
diate engagement (clicks) and long-term conversion objectives
(downloads/purchases) while ensuring fairness and diversity in
ranking results:

1) Field-Aware Positional Transformer Encoders
(FAPTE): A novel encoding framework that preserves
the heterogeneous structure of e-commerce data by
processing queries and product descriptions through
field-specific positional embeddings, enabling fine-
grained semantic understanding across different product
attributes and query contexts.

2) Late-Interaction MaxSim Features with Multi-Task
Adaptation: An efficient token-level interaction mech-
anism that computes task-specific similarity scores be-
tween queries and documents while maintaining compu-
tational tractability for real-time inference requirements.

3) Cohort-Conditioned HyperNetworks with Uncer-
tainty Estimation: A dynamic parameter generation
system that adapts expert gating and task balancing
coefficients based on contextual cohort information,
incorporating epistemic uncertainty quantification for
robust decision-making.

4) IPS-Weighted Pairwise RankNet with Exposure-
Diversity Regularization: A bias-aware ranking objec-
tive that corrects for presentation bias through inverse

propensity scoring while simultaneously promoting di-
versity through exposure-based regularization terms.

5) Unified Multi-Task Learning Framework: An inte-
grated learning paradigm that jointly optimizes click
prediction, conversion prediction, and ranking objectives
through uncertainty-weighted loss balancing and adap-
tive gradient optimization.

The architectural design principles prioritize: (1) Scalability
- sub-200ms inference latency for production deployment, (2)
Interpretability - explicit modeling of task relationships and
bias correction mechanisms, and (3) Adaptability - dynamic
parameter adjustment based on contextual signals and uncer-
tainty estimates.

CTMR Architecture

Query + Product Fields
↓

Field-Aware Positional Encoders
↓

Late-Interaction MaxSim Features
↓

Cohort-Conditioned HyperNetworks
↓

Uncertainty-Weighted MMOE
↓

IPS-Weighted RankNet + Diversity Loss
↓

Final Rankings

Fig. 1. Overview of CTMR architecture showing the integrated pipeline from
field-aware encoding to bias-corrected ranking optimization.

B. Field-Aware Positional Transformer Encoders

Modern e-commerce search systems must process hetero-
geneous textual information across multiple structured fields
while maintaining computational efficiency for real-time in-
ference. We introduce a novel Field-Aware Positional Trans-
former Encoder (FAPTE) that explicitly models field-level
semantics and positional relationships within product catalogs
and user queries.

1) Multi-Field Tokenization and Embedding
Strategy: Given a product p with associated fields
F = {title, topics, category, style} and a user query
q, we perform field-aware tokenization where each token
ti,f is associated with both its textual content and field type
f ∈ F . The tokenization process preserves field boundaries
while enabling cross-field attention mechanisms.

For each token ti,f , we construct a composite embedding
that integrates three complementary representations:

ei,f = Wtoken · vti +Wfield · ff +Wpos · pi (1)

where vti ∈ Rd represents the pre-trained token embedding,
ff ∈ Rd denotes the learnable field-type embedding for field f ,
and pi ∈ Rd captures positional information using sinusoidal
encodings modified for field-aware contexts.



2) Hierarchical Positional Encoding: Traditional positional
encodings fail to capture the hierarchical structure inherent
in e-commerce data where field-level positioning is as im-
portant as token-level positioning. We propose a hierarchical
positional encoding scheme:

pi = α · PEglobal(i)+β · PEfield(ilocal)+ γ · PEcross(f) (2)

where PEglobal(i) provides absolute positional information
across the entire sequence, PEfield(ilocal) encodes the relative
position within the current field, and PEcross(f) captures inter-
field relationships. The weighting parameters α, β, and γ
are learned during training to optimize field-aware attention
patterns.

3) Lightweight Transformer Architecture with Field-
Constrained Attention: To maintain real-time inference
capabilities essential for e-commerce applications, we employ
a computationally efficient Transformer architecture with
4 encoder layers, 8 attention heads, and 256-dimensional
hidden representations. The architecture incorporates field-
constrained attention mechanisms:

Attention(Q,K, V ) = softmax
(
QKT +Mfield√

dk

)
V (3)

where Mfield is a learnable field-relationship matrix that
modulates attention weights based on field compatibility pat-
terns observed in Adobe creative content product data.

C. Late-Interaction MaxSim Features with Multi-Task Adap-
tation

Traditional dense retrieval models suffer from the rep-
resentation bottleneck, where complex query-document re-
lationships must be compressed into fixed-size vectors be-
fore similarity computation. To address this limitation while
maintaining computational efficiency, we introduce an adap-
tive Late-Interaction MaxSim (LI-MaxSim) feature extraction
mechanism.

1) Task-Specific Late Interaction: For each task τ ∈
{click, download}, we compute task-adapted MaxSim scores
that capture different aspects of query-document relevance:

sτLI =
1

|q|

|q|∑
i=1

|d|
max
j=1

⟨Wτhq
i ,W

τhd
j ⟩ (4)

where Wτ ∈ Rdmodel×dmodel represents task-specific pro-
jection matrices learned jointly with the multi-task objectives,
and hq

i ,h
d
j are contextualized token representations from our

FAPTE encoders.
2) Multi-Granularity Interaction Features: To capture in-

teractions at multiple semantic levels, we extend the basic
MaxSim computation to include field-level interactions:

sτ,fieldLI (fq, fd) =
1

|qfq |
∑
i∈qfq

max
j∈dfd

⟨Wτ,fq,fdhq
i ,W

τ,fq,fdhd
j ⟩

(5)

where qfq and dfd represent tokens from fields fq and fd
respectively, enabling fine-grained semantic matching between
query intentions and product attributes.

D. Cohort-Conditioned HyperNetworks with Uncertainty Es-
timation

E-commerce search behavior exhibits significant variation
across different user cohorts, temporal contexts, and market
conditions. To capture this heterogeneity, we introduce Cohort-
Conditioned HyperNetworks (CCH) that dynamically generate
expert gating parameters and task balancing coefficients based
on contextual signals while incorporating uncertainty quantifi-
cation for robust decision-making.

1) Cohort Embedding and Context Encoding: We define a
comprehensive cohort representation that encompasses multi-
ple contextual dimensions:

c = Concat[clocale, ctemporal, csegment, cmarket] (6)

where each component captures specific aspects of the
search context:

• clocale: Geographic and linguistic context
• ctemporal: Seasonal and time-of-day patterns
• csegment: User behavioral segmentation
• cmarket: Market-specific characteristics

2) HyperNetwork Architecture with Uncertainty Quantifi-
cation: The cohort-conditioned hypernetwork generates two
types of adaptive parameters: expert gating weights and task
balancing coefficients. We employ a variational approach to
capture uncertainty in parameter generation:

θµ
gate,θ

σ
gate = HyperNetgate(c) (7)

θµ
balance,θ

σ
balance = HyperNetbalance(c) (8)

where θµ and θσ represent the mean and variance of the
generated parameters, enabling uncertainty-aware adaptation.

3) Expert Gating with Epistemic Uncertainty: The expert
gating mechanism incorporates uncertainty through sampling
from the learned parameter distributions:

ge = softmax(θµ
gate + ϵ⊙ θσ

gate) (9)

where ϵ ∼ N (0, I) introduces controlled stochasticity, and
ge represents the gating weights for expert e.

4) Dynamic Task Balancing: The task balancing coefficient
αCV R is generated adaptively based on cohort characteristics:

αCV R = σ(θµ
balance + ϵ⊙ θσ

balance) (10)

This enables dynamic weighting between immediate en-
gagement (CTR) and long-term conversion (CVR) objectives
based on contextual appropriateness.



E. IPS-Weighted Pairwise RankNet with Exposure-Diversity
Regularization

E-commerce search data exhibits systematic biases due to
position effects, popularity bias, and presentation mechanisms.
To address these challenges, we develop an integrated frame-
work that combines Inverse Propensity Scoring (IPS) for bias
correction with exposure-diversity regularization for fairness
optimization.

1) Position-Based Propensity Estimation: We model click
propensities using a position-based decay function that cap-
tures the decreasing likelihood of user engagement at lower
ranks:

p̂(r) =
1

r + k
(11)

where r represents the ranking position, k = 2.0 controls the
decay rate, and p̂(r) estimates the probability of examination
at position r. This model is calibrated using historical click-
through data across different query types and user segments.

2) IPS-Weighted Pairwise Loss: For document pairs (i, j)
where document i is more relevant than document j, we define
the IPS-weighted pairwise loss:

LIPS
pair =

∑
(i,j)

wij · ℓ(si − sj , yij) (12)

where the IPS weight is computed as:

wij =
1

p̂i(1− p̂j)
(13)

and ℓ(·) represents the pairwise ranking loss function. We
employ a robust focal loss variant to handle hard examples:

ℓ(si − sj , yij) = −(1− σ(si − sj))
γ log σ(si − sj) (14)

where γ = 2.0 focuses learning on difficult ranking pairs.
3) Exposure-Diversity Regularization: To promote fairness

and long-tail coverage, we introduce an exposure-diversity reg-
ularizer based on the Gini coefficient of exposure distribution:

Ldiv = λdiv · Gini(Exposure(B)) (15)

where Exposure(B) represents the exposure values for
documents in batch B, computed as:

Exposure(d) =
1

log(rank(d) + 2)
(16)

The Gini coefficient is computed using the standard for-
mula:

Gini(x) =
2
∑n

i=1 i · x(i)

n
∑n

i=1 x(i)
− n+ 1

n
(17)

where x(i) represents the i-th smallest value in the sorted
exposure vector.

F. Unified Multi-Task Learning Framework

The complete CTMR framework integrates all components
through a unified multi-task learning objective that balances
multiple competing goals while adapting to uncertainty esti-
mates and contextual variations.

1) Uncertainty-Weighted Loss Integration: Following the
uncertainty weighting paradigm, we combine task-specific
losses with learned uncertainty parameters:

LMTL =
∑

τ∈{CTR,CV R}

1

2σ2
τ

Lτ + log στ (18)

where στ represents the learned uncertainty parameter for
task τ , and Lτ denotes the task-specific loss (binary cross-
entropy for both CTR and CVR prediction).

2) Complete Training Objective: The final training objec-
tive combines all loss components with adaptive weighting:

Ltotal = LMTL + λrankLIPS
pair

+ λdivLdiv + λregLreg

(19)

where Lreg represents L2 regularization terms, and the
weighting coefficients are learned through hyperparameter
optimization.

3) Adaptive Gradient Optimization: To handle the com-
plexity of multi-objective optimization, we employ an adaptive
gradient optimization strategy that dynamically adjusts learn-
ing rates based on gradient magnitudes and loss convergence
patterns:

lrτ (t) = lrbase ·
√
1 + γ · ∥∇Lτ∥2

1 + δ · t
(20)

where γ and δ control the adaptation rate and decay
schedule respectively.

4) Inference and Deployment Considerations: For produc-
tion deployment, we implement several optimizations to ensure
sub-200ms inference latency:

Model Quantization: 8-bit quantization of transformer
weights reduces memory footprint by 75% with minimal
performance degradation.

Early Termination: Dynamic computation graphs allow
early termination when confidence thresholds are met.

Caching Strategies: Intermediate representations are
cached for repeated queries within user sessions.

The complete CTMR framework represents a significant ad-
vancement in multi-task ranking for e-commerce applications,
providing a principled approach to handling bias, uncertainty,
and diversity while maintaining the computational efficiency
required for large-scale deployment.

IV. EXPERIMENTS

A. Experimental Setup

1) Dataset Description: We conduct comprehensive ex-
periments on a large-scale proprietary dataset from Adobe
creative content marketplace, containing 4.2M query-product
interaction records spanning 1 month of user activity. The



dataset exhibits realistic Adobe creative content product char-
acteristics with significant position bias, query diversity, and
long-tail product distributions.

Data Characteristics:
• Scale: 4.2M interactions training data examples.
• Multi-Task Labels: Binary CTR (click-through) and

CVR (conversion/download) with positive and negative
labels

• Temporal Split: Training (70%), validation (15%), test
(15%) with chronological ordering to simulate production
deployment

Feature Engineering: Following production requirements,
our feature set encompasses multiple modalities:

1) Textual Features: Query strings and product metadata
(title, topics, category, style) processed through field-
aware tokenization

2) Dense Embeddings: CLIP-based visual-semantic em-
beddings (512-dim) for product images and query intent

3) Knowledge Graph Features: Entity relationships and
attribute hierarchies encoded as sparse categorical fea-
tures

4) Contextual Features: User demographics, locale meta-
data, temporal signals, and session context

5) Behavioral Features: Historical CTR/CVR rates, user
preference profiles, and cross-category engagement pat-
terns

CTMR framework employs a comprehensive multi-modal
feature engineering strategy that captures diverse aspects of
user-product interactions in e-commerce search scenarios. The
feature architecture encompasses four primary categories: User
features, Item features, Context features, and Cross features,
as detailed in Table I.

TABLE I
COMPREHENSIVE FEATURE CATEGORIES IN CTMR SYSTEM. EXTENSIVE
FEATURE ENGINEERING IS APPLIED ACROSS MULTIPLE MODALITIES FOR

ENHANCED REPRESENTATION LEARNING.

User Item Context Cross

Language Style Timestamp Language × Country
Country Title Locale Language × Region
Region Mood Page Language × Style
User Segment Creative Intents Session ID Region × Country
Behavior History Topics Page Context Region × Category
. . . . . . . . . . . .

2) Implementation Details: Our CTMR implementation
utilizes PyTorch with mixed-precision training for computa-
tional efficiency. The architecture specifications are:

• Field-Aware Transformers: 4 layers, 8 attention heads,
256 hidden dimensions with hierarchical positional en-
coding

• MMoE Network: 4 experts with 3-layer DNNs (512-
256-128 neurons), uncertainty-weighted task balancing

• Cohort-Conditioned HyperNetworks: 64-dimensional
cohort embeddings generating expert gates and task mix-
ing coefficients

TABLE II
CTMR MODEL COMPARISON ON ADOBE CREATIVE CONTENT DESIGN

PLATFORM DATASET. Tuning: GRIDS, SEEDS, AND EARLY STOPPING

Model AUC LogLoss Params
MMoE 0.8163 0.1408 75,466
UWM3R 0.9231 0.0827 279,990
CTMR 0.9958 0.016 2,567,588

• Optimization: AdamW optimizer (β1 = 0.9, β2 =
0.999, ϵ = 10−8) with OneCycleLR scheduling

• Regularization: L2 penalty (λ = 10−5), gradient clip-
ping (max norm 0.5), dropout (0.2)

3) Experiment Environment: Following the experiment
setup:

• Hyperparameters: AdamW optimizer, learning rate 3×
10−4, batch size 256, dropout 0.3, 3 random seeds.

• Infrastructure: 96 vCPUs, 192GB RAM.
• Evaluation: Bootstrap confidence intervals; paired t-

tests; latency measured on CPU.

B. Evaluation Methodology

1) Metrics: We employ a comprehensive evaluation frame-
work addressing multiple aspects of ranking quality:

Ranking Effectiveness:
• NDCG@k (k ∈ {1, 5, 10, 20}): Measures graded rele-

vance with position discounting
• MAP: Mean Average Precision for binary relevance

assessment
• MRR: Mean Reciprocal Rank focusing on first relevant

result
Task-Specific Performance:
• CTR/CVR AUC: Area under ROC curve for binary

classification tasks
• CTR/CVR@k: Position-specific engagement rates at

ranks k ∈ {1, 3, 5, 10, 20}
Fairness and Diversity:
• Exposure Gini: Inequality coefficient for product expo-

sure distribution
• Long-tail Lift: Relative engagement improvement for

products with lower popularity rank
Computational Efficiency:
• P95 Latency: 95th percentile inference time for real-time

deployment
2) Baseline Methods: We compare CTMR against state-of-

the-art ranking and multi-task learning approaches:
1) MMoE: Multi-gate mixture-of-experts for multi-task

learning
2) UWM3R: Uncertainty-weighted multi-modal multi-task

ranking

C. Main Results

Table II, Table III and Table IV presents comprehensive
offline evaluation results demonstrating CTMR’s significant
improvements across evaluation dimensions.



Key Findings:

1) Ranking Quality: CTMR achieves substantial improve-
ments in ranking metrics, with AUC, NDCG, MAP, and
MMR increasing over the strongest baseline (UWM3R),
demonstrating superior relevance prediction.

2) Computational Efficiency: Despite architectural com-
plexity, CTMR maintains low inference latency (143ms
P95), suitable for production deployment.

D. Ablation Studies

Table III presents detailed ablation studies quantifying the
contribution of each CTMR component.

TABLE III
ABLATION STUDY RESULTS. EACH ROW ADDS ONE COMPONENT TO THE

BASE ARCHITECTURE.

Configuration NDCG MAP MMR

Base (MMoE only) 0.661 0.542 0.612
+ Field-Aware Transformers 0.683 0.551 0.623
+ Late-Interaction MaxSim 0.701 0.564 0.638
+ Cohort HyperNetworks 0.718 0.578 0.651
+ IPS Weighting 0.721 0.591 0.669
+ Diversity Regularization 0.729 0.606 0.681

V. SYSTEM DESIGN AND SCALABILITY

A. Production Architecture

CTMR is deployed by Adobe Createive Content Processing
Framework(CPF) microservices with TorchScript artifacts in
the re-ranking tier of our production search system, operating
on top-K=50 candidates from the retrieval stage. The archi-
tecture ensures scalability and fault tolerance:

• CPU Deployment: CPU instances provide primary infer-
ence with 143ms P95 latency for 50-document re-ranking

• A/B Testing Framework: Gradual rollout with auto-
mated performance monitoring and rollback capabilities

B. Computational Complexity

Table IV compares computational requirements across
methods:

TABLE IV
COMPUTATIONAL COMPLEXITY ANALYSIS FOR RE-RANKING 50

DOCUMENTS.

Model Latency (ms) Memory (MB)

UWM3R 126 26
CTMR 143 40

Despite increased complexity, CTMR’s efficiency optimiza-
tions (hierarchical computation, attention pruning) maintain
practical deployment feasibility.

VI. CONCLUSION

We introduced CTMR, a Transformer-based multi-objective
re-ranker for e-commerce search that integrates semantic mod-
eling, cohort-aware personalization, debiasing, and diversity
control into a unified framework. By combining these ele-
ments, CTMR advances responsible industrial ranking sys-
tems, demonstrating measurable improvements in both CTR
and CVR while simultaneously reducing exposure bias and
promoting fair item distribution. The design meets production
constraints with sub-200ms latency, highlighting its practical-
ity for large-scale deployment.

A. Broader Impact

CTMR shows that relevance, personalization, fairness, and
efficiency can be optimized jointly, establishing a step toward
responsible AI in e-commerce. The approach provides a tem-
plate for scalable re-ranking that balances business metrics
with long-term marketplace health.

B. Future Directions

Future research will extend CTMR through large-scale
online A/B testing, user-centric evaluations of engagement
and satisfaction, and integration with lightweight LLM-based
query rewriting for better intent understanding. Additional
opportunities include compression for faster inference, lever-
aging LLMs, user sequential behavior, cross-modal embedding
extensions (e.g., visual or conversational search), and inter-
pretability mechanisms to provide a more user personalized
re-ranking experience.
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