Query Attribute Modeling: Improving search
relevance with Semantic Search and Meta Data
Filtering

Karthik Menon*, Batool Arhamna Haider, Muhammad Arham*,
Kanwal Mehreen, Ram Mohan Rao Kadiyala, Muhammad Ali Shafique, Hamza Farooq
traversaal.ai
USA
Email: {karthik, batool, muhammad.arham, ram, ali, hamza} @traversaal.ai, kanwalmehreen2000 @ gmail.com

Abstract—The exponential growth of e-commerce has created
vast product catalogs where traditional keyword, semantic or
hybrid search struggles to balance precision with relevance,
frequently overlooking attribute constraints or misinterpreting
user intent. This study introduces Query Attribute Modeling
(QAM), a hybrid framework that enhances search precision and
relevance through a two-step process. First, item descriptions
and titles are decomposed into structured attributes and stored as
metadata key-value pairs alongside item description embeddings.
Second, QAM decomposes open text queries into structured
metadata tags and semantic elements, enabling focused retrieval
by automatically extracting metadata filters from free-form text
queries and reducing noise. Experimental evaluation using the
Amazon Toys Reviews dataset (10,000 unique items with 40,000+
reviews and detailed product attributes) demonstrated QAM’s
superior performance, achieving a mean average precision at 5
(mAP@S5) of 52.99%. QAM showed substantial improvements:
28.67% over BM25 keyword-based search, 6.5% over semantic
search, 8.58% over cross-encoder reranking, and 9.96% over
hybrid search combining encoder embeddings and BM25 results
using Reciprocal Rank Fusion. The results establish QAM as a
robust solution for Enterprise Search applications, particularly
in e-commerce systems.

Index Terms—Information Retrieval, Large Language Models,
Metadata Filtering

I. INTRODUCTION

The evolution of search engines has progressed from basic
retrieval systems to advanced models capable of understand-
ing context and semantics. In its infancy, search engines
were primarily concerned with the retrieval of information,
employing crawling, indexing, and ranking mechanisms to
facilitate access to indexed web pages. Although revolutionary,
this initial paradigm lacked the ability to discern contextual
relevance and user intent, leading to a search experience that
often failed to meet user expectations [1].

During the mid-1990s [2], a paradigm shift occurred with
the emergence of keyword-based search. This approach, epit-
omized by search engines such as Excite [3] and WebCrawler
[4], allowed users to retrieve information based on specific
keywords or phrases. However, they exhibit notable weak-
nesses, such as a lack of understanding of the semantic
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meaning of queries, which can result in irrelevant results
when keywords have multiple meanings [5]. This shortcoming
highlighted the need for more advanced search technologies
capable of interpreting the intent and contextual meaning
behind queries.

Later era witnessed the emergence of semantic search
with methods like Latent Semantic Analysis Theory [6] and
TexLexAn [7]. By incorporating natural language processing
and machine learning techniques, semantic search systems
aimed to provide more accurate and contextually relevant
results, marking a departure from simplistic keyword matching
paradigms and ushering in a new era of search sophistication
and user-centricity. However, semantic search also encounters
challenges, including managing language ambiguity, ensuring
scalability, and addressing computational overhead, which
can result in incomplete or inaccurate results, particularly in
complex, real-world scenarios [8].

In recent years, hybrid search [9] has emerged as a synergis-
tic fusion of keyword-based precision and semantic contextual
understanding. This hybrid approach combines the strengths
of both the keyword-based and semantic search approaches,
thus enhancing the overall search experience for users. Despite
its promise, challenges persist in integrating keyword and
semantic results, particularly in scenarios involving complex
queries and rich metadata like, “I am looking for educational
toys specifically from LEGO, designed to promote creativity,
suitable for children aged 5-8” and “Locate a top-rated board
game from Hasbro for kids aged 9-12 within a budget of $40”.

Against this backdrop of evolving search methodologies,
Query Attribute Modeling (QAM) emerges as a new paradigm
designed to redefine enterprise search. QAM introduces a
novel framework that harmonizes the semantic and keyword-
based capabilities, addressing the inherent limitations of exist-
ing search systems. By systematically dissecting user queries
into structured metadata tags and semantic components, QAM
enables a more precise and contextually relevant interpretation
of user queries.

The primary objective of this research is to demonstrate
how Query Attribute Modeling enhances search precision and
relevance based on user open text search. Through detailed



experimentation and analysis, we aim to showcase its potential
to transform enterprise search by addressing the challenges
of scalability, efficiency, and adaptability in handling complex
real-world queries. The following sections outline the method-
ology (Section II), experimentation (Section III), and results
(Section IV), highlighting QAM’s effectiveness in meeting the
growing demands of modern search technologies.

II. METHODOLOGY

The methodology employed in our research follows a sys-
tematic approach to enhance the precision and relevance of
search results within the context of Query Attribute Modeling
(QAM). It comprises of four distinct steps, each designed to
address specific aspects of search refinement and optimization,
as shown in Figure 1.

Algorithm 1 QAM Algorithm

Require: Query (), Dataset D
1: Input: @ = “A long black dress from Zara under $100”
2: Output: Ranked search results R

Step 1: Query Decomposition
3: Qmetadata < EXtract metadata tags (e.g., color, brand)
4: Qsemantics < EXtract semantic elements

Step 2: Metadata Filtering
5: Deitered < {p € D | p.metadata matches Qmetadata |

Step 3: Review Similarity
6: for each product p € Dgjereqg do
p.score «— CosSim(Enc(Qsemantics, P))
8: end for

Step 4: Final Ranking
9: for each product p € Dyjereq do
10: p.final_score +— CrossEncoder(Q, p)
11: end for
12: R < Sort(Dyiered, by = p-final_score)

return Top-/N results from R

A. Query Decomposition

The first step focuses on dissecting user queries into two
primary components: metadata tags and semantic elements.
This decomposition enables the search system to separate
explicit user requirements (e.g., “color” or “brand”)) from the
deeper contextual meaning of the query. To achieve this, we
employ a language model (e.g., GPT-40) [10], which excels in
parsing complex queries and extracting structured information.

o Metadata Tags: These include structured attributes such

as product brand, material, price constraints, and pre-
ferred user demographics (e.g., age groups). These tags
provide a structured way for filtering datasets effectively.

« Semantic Elements: These capture the contextual intent
of the query, allowing the system to understand implicit
preferences and refine results accordingly.

B. Metadata Filtering for Enhanced Search Precision

Building upon the extracted metadata tags, the subsequent
step focuses on enhancing search precision by using these
tags to filter the dataset and retain only the most relevant
items. Metadata attributes such as material, brand, and color
play a crucial role in this filtering process. For instance, in
a query like “a little black dress,” the system utilizes the
extracted metadata tag “black” & ‘“Zara” to exclude irrelevant
results, such as dresses of other colors or brands. Similarly,
filtering by material and brand ensures that user preferences
are prioritized early in the pipeline, reducing computational
overhead for subsequent steps. This method enhances both
efficiency and precision by eliminating noise from the dataset.
Metadata filtering has been shown to be a lightweight yet
impactful technique for aligning search results with user intent
[11].

C. Query and Product Description Similarity Search

This step employs semantic embeddings and cosine similar-
ity to connect user queries with relevant qualitative information
in product reviews. Semantic embeddings, generated using
advanced models like nomic-embed-text-vl [12], encode the
contextual meaning of the query and reviews into vector
representations. Cosine similarity is then calculated to mea-
sure how well a product aligns with the user’s intent. For
example, if a query specifies “suitable for formal events,”
this step prioritizes products with reviews mentioning “formal
occasions”. By linking the subjective components of the query
with qualitative descriptions in the reviews, this step deepens
the system’s understanding of user requirements and enhances
result relevance. This builds on existing methodologies using
contextual review analysis to improve search outcomes [13].

D. Final Ranking

The final step integrates the outputs of the previous phases
to deliver the most relevant results. A cross-encoder model,
such as msmarco-MiniLM-L12-en-de-vl [14], is employed
to compute the final relevance score for each product. Un-
like bi-encoders, which generate separate embeddings for
queries and products and compute relevance scores based on
their similarity, cross-encoders process the query and product
together, directly modeling their interaction. This approach
allows cross-encoders to capture finer-grained relationships
between the query and product, leading to more accurate
rankings [15]. For each product in the filtered dataset, the
cross-encoder computes a final score based on the semantic
similarity between the query and product attributes. The results
are then sorted by these scores to produce a ranked list of
items, ensuring that the most relevant results are prioritized.
This step ensures the delivery of highly personalized and
contextually relevant search results.

III. EXPERIMENTATION
A. Data

The experimentation phase utilized the Amazon Toys Re-
views dataset, which consists of 10,000 unique items with
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Fig. 1. Query Attribute Modeling (QAM) methodology, illustrating the four-stage process of query understanding, metadata filtering, semantic search, and

re-ranking of results from the filtered dataset.

product descriptions and 40,000+ reviews including 15 raw
and engineered features. This data set was chosen for its
extensive coverage of product reviews, which facilitates a
detailed analysis at the review level for each product.

In addition to reviews, a significant focus was placed on
feature extraction from product descriptions. This involved
extracting essential attributes such as brand and required
minimum age. To achieve this, advanced text preprocessing
techniques were applied, using natural language processing
(NLP) libraries such as NLTK and spaCy. These techniques
enabled the extraction of pertinent information from the textual
descriptions, enriching the dataset with valuable metadata.

To evaluate QAM and its competing methods, a diverse
set of 1,000 queries was generated using GPT-40. These
queries were designed to simulate realistic user searches,
capturing both explicit requirements (e.g., brand, price, age)
and subjective intent (e.g., suitability for specific occasions).
Out of the generated queries, 200 high-quality queries were
selected for the evaluation dataset to ensure alignment of brand
names and attributes with the entries in the original Amazon
dataset. Examples include: “Can I find Playteachers toys for
kids aged 6 to 15?” and “Looking for a Kaleidoscope toy
for my 3-year-old, priced around $12.” This carefully curated
query set provided a robust basis for evaluating QAM’s hybrid
approach to address both explicit preferences and contextual
query intent.

B. Evaluation Setup

The evaluation involved running each query against five
search methods: BM25 keyword-based search [16], semantic
search [8], cross-encoder re-ranking, hybrid search, and QAM.
Each method returned the top 10 results, which were annotated
for relevance using an LLM (GPT-40).

Annotation Process: The LLM was given both the query
and the returned results and was tasked with determining

whether each result was relevant. The relevance was based
on the following:

« Exact match for metadata (e.g., price, brand). For quan-
titative values including rating and price, we allowed for
a 20% percent complacency between the returned value
and the required value to allow flexibility in responses.
« Semantic alignment for contextual preferences.

Scoring Metrics: The annotated results were evaluated
using precision@k (P@k) and mean average precision@k
(mAP@Xk). These metrics captured the accuracy and ranking
quality of each method [17].

Precision at k (P@k) measures the ratio of relevant items
among the top K results, as shown in (1).

Rel Resul k
PrecisionQk = clevant kesu @ )

Average Precision@K (AP@K) calculates the precision at
each rank where a relevant item appears, averaged over all
relevant items, as defined in (2).

K

L Z P(i)-rel(i) (2

APQK =
min (K, Total Relevant Items)

AP@k score values the ranking of retrieved results, return-
ing a higher score if relevant data points are ranked higher
than non-relevant results. Mean Average Precision (mAP@K)
computes the mean of AP@K scores across all data samples,
providing an aggregate score for all queries, as given in (3).

N
1
mAPOK = — ; APQK, 3)
The use of an LLM as a judge automated the annotation
process, reducing human bias and ensuring consistent eval-
uation standards [18]. Additionally, for complex queries and
certain metadata combinations, the QAM search method may
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Fig. 2. Comparison of Precision and mAP scores for five retrieval methods across varying k values. The y-axis represents the percentage of relevant documents
among the top-k results, with QAM outperforming all other methods across all k values.

significantly reduce the candidate set, yielding fewer than
k retrieved results. To ensure an unbiased evaluation, we
restricted our analysis to search instances where at least k
relevant documents were available. In cases where fewer than
k relevant results existed, the missing results were treated as
non-relevant, thereby penalizing our approach for failing to
retrieve the desired number of relevant documents.

IV. RESULTS AND ANALYSIS

The results demonstrate that QAM significantly outperforms
traditional search methods.

In terms of Mean Average Precision at 5 (mAP@5), QAM
achieved a score of 52.99%, which is consistently higher
than the scores of the other methods. Specifically, QAM
showed a 28.67% improvement over BM25 keyword-based
search (41.19%), 6.5% over semantic search (49.75%), and
8.58% over cross-encoder reranking (48.81%). QAM achieved
a 9.96% improvement compared to hybrid search, which
combined encoder embeddings and BM25 search results using
Reciprocal Rank Fusion (RRF) and scored 48.22%. Table II
summarizes the mAP@K scores for all methods.

Furthermore, the comparison of Precision@K, summarized
in Table I, across all methods demonstrates the consistent
superiority of QAM. Across all values of k (1 to 10), QAM
consistently retrieves a higher percentage of relevant results
compared to other methods. Figure 2 summarizes these find-
ings, illustrating how P@K and mAP@K vary with k. The
results indicate that QAM outperforms all other approaches in
the Amazon toy data set retrieval task by effectively filtering
out irrelevant results prior to searching, thus improving the
overall relevance of the retrieved documents.

Thus, QAM outperforms hybrid search and other retrieval
methods in scenarios requiring both specificity and contextual
understanding. Unlike hybrid search, which combines mul-
tiple ranking signals, QAM’s structured approach enhances

TABLE I

PRECISION@K SCORES ACROSS METHODS
Method P@3 P@5s P@10
Keyword Search | 36.55% | 23.62% 16.74%
Semantic Search | 41.15% 29.52% 21.89%
Re-Ranking 41.38% 32.19% 22.21%
Hybrid Search 39.77% 28.19% 19.68%
QAM 46.67% | 36.00% | 22.32%

2Bold indicates highest precision for each metric.

TABLE 11
MEAN AVERAGE PRECISION (MAP@K) SCORES
Method mAP@3 | mAP@5 | mAP@10

Keyword Search 53.39% 41.19% 37.33%
Semantic Search 58.97% 49.75% 44.75%
Re-Ranking 56.03% 48.81% 43.59%
Hybrid Search 58.28% 48.22% 44.20%
QAM 62.47 % 52.99% 48.84%

2Bold indicates highest mAP for each column.

relevance and retrieval accuracy, making it a more effective
solution for modern search challenges.

V. CONCLUSION

In conclusion, this research introduces Query Attribute
Modeling (QAM), an innovative framework for enhancing
precision and relevance in search systems. By systematically
integrating query decomposition, metadata filtering, and con-
textual analysis, QAM consistently outperforms traditional
keyword-based and semantic search methods. For the next
phase, we aim to enable the Language Model (LLM) API
to autonomously identify relevant keyword tags from user
queries, eliminating the need for explicit guidance and en-
hancing the dynamism of our query deconstruction process.
Additionally, the integration of powerful vector databases like
Qdrant [19] will streamline information retrieval, contributing



to a more sophisticated search experience. We intend to
address scalability limitations inherent in manual data labeling
by scaling our model to standard databases and a wider array
of queries, ensuring stability and robustness across diverse
datasets.
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