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Abstract—The usage of Vision-Language Models (VLMs) is
ubiquitous in modern AI systems. VLMs are often evaluated on
clean data, whereas real-world data can be noisy and imperfect.
This paper introduces a lightweight diagnostic framework to
evaluate the retrieval robustness of VLMs under visual and
textual noise. 10k image-text pairs were randomly sampled from
the Fashion200k dataset, and 13 types of structured noise have
been applied to the visual data and 5 types of structured noise
have been applied to the textual data. In this study, we evaluate
the performance of 5 VLMs in multiple retrieval scenarios:
clean-text-to-noisy-image, noisy-image-to-clean-image and noisy-
text-to-clean-image under various perturbations. This lightweight
diagnostic framework can be utilized in a plug-and-play manner
to evaluate the robustness of VLMs.

Index Terms—vision–language models, multimodal retrieval,
text-to-image retrieval, image-to-image retrieval, noisy queries,
robustness evaluation, e-commerce information retrieval

I. INTRODUCTION

Vision–Language models (VLMs) [1]–[5] tend to show
good performance in clean benchmark data sets for tasks such
as retrieval and zero-shot classification. However, real-world
image and text data can be noisy or degraded. Most often,
the evaluations of VLMs are done under ideal conditions
making it difficult to gauge the effectiveness of the models
under challenging scenarios. The robustness of models under
perturbations has been studied extensively for tasks such as
classification (e.g. ImageNet-C/ImageNet-P/ImageNet-R [6],
[7]) but there are limited studies in the retrieval space. Qiu
et al. [8] have proposed a broader evaluation framework in-
corporating multiple visual and textual perturbations to assess
the robustness of image-text models. There remains a need for
a lightweight, plug-and-play evaluation framework to evaluate
the retrieval performance under structured noise. This paper
introduces NoiseStat, a minimalistic diagnostic framework to
evaluate the retrieval robustness of VLMs under 13 types
of visual noise and 5 types of textual noise. In this study,
10000 image-text pairs were randomly sampled from the
Fashion200k [9] dataset and used for the study. The retrieval
performance was studied in various scenarios: clean-text-to-
noisy-image, noisy-image-to-clean-image, and noisy-text-to-
clean-image. The retrieval scenarios for this study have been
chosen keeping in mind the e-commerce domain. The clean
text to noisy image retrieval emulates those scenarios where
users search for products in platform where the item or product

photos are uploaded by users which might not be perfect, espe-
cially in marketplaces or used product type of platforms. The
noisy image to clean image retrieval emulates scenario where
the user uploads noisy image and tries to find similar clean
catalog images from the e-commerce platform. The noisy text
to clean image is the scenario where users accidentally make
mistakes in typing their search query especially on mobile
e-commerce applications. For all the retrieval scenarios, the
recall@k metrics was calculated. The VLMs used of this study
are CLIP [1], AltCLIP [2], FashionCLIP [10], SigLIP [4] and
SigLIP-2 [5].

II. METHODOLOGY

The Fashion200k dataset was used for the study, 10000
image-text pairs were randomly sampled from the dataset.
No additional preprocessing was done, the images and text
descriptions were used as-is. The dataset was loaded from
Hugging Face (Marqo/fashion200k).

A. Visual Perturbations

In this study, 13 structured noise types were applied to
the images. There were 10 single noise perturbations (e.g.,
gaussian noise, motion blur, color jitter, etc.) and 3 tiered
noise compositions (tier easy, tier medium, tier hard), which
are combinations of 3-4 single noises. Real-world images can
contain multiple noise types, to emulate that scenario and
also to test the robustness of VLMs under challenging cir-
cumstances, a 3-tier system was created. In order to maintain
reproducibility, all noises were applied using deterministic
parameters (single severity level per noise). This design keeps
the setup lightweight and fully reproducible, allowing other
researchers to extend the same noise definitions or severity
levels without requiring heavy compute resources. Table I lists
the 13 noise types and the corresponding parameters. For the
tiered noises, the same severity level values of atomic noises
were used for consistency. Figure 1 displays a sample original
image and the 13 noisy images based on the noise applied. In
this paper, the original images are referred to as clean images.

B. Textual Perturbations

In this study, 5 structured noise types were applied to
the text data. There were 4 single noise perturbations (typo,
deletion, swap, insertion) and 1 tiered noise composition,



TABLE I
DESCRIPTION OF VISUAL NOISE TYPES APPLIED IN THIS STUDY

Noise Type Method Key Parameters
Gaussian Noise Additive white noise Mean = 0, Std = 25
Salt and Pepper Noise Random black/white pixel flip Amount = 0.03
Occlusion Central black rectangle Area = 15%
Gaussian Blur PIL GaussianBlur σ = 2.0
Color Jitter torchvision ColorJitter Brightness/Contrast/Saturation = 0.8, Hue =

0.1
Motion Blur Directional kernel via OpenCV Kernel size = 15, Angle = 0
Perspective Warp Random inward corner shift Distortion scale = 0.2
Grayscale Convert to grayscale and back to RGB –
Fog Overlay White image blend simulating fog Blend α = 0.4
Rain Overlay White pixel noise overlay + Gaussian blur + image

blend
Drop prob = 0.3, Blur σ = 1.5, Blend α =
0.3

Tier Easy Fog + Gaussian Noise + Gaussian Blur + Perspective
Warp

Composite

Tier Medium Color Jitter + Rain + Grayscale Composite
Tier Hard Salt-and-Pepper + Motion Blur + Occlusion Composite

TABLE II
DESCRIPTION OF TEXTUAL PERTURBATION TYPES APPLIED IN THIS

STUDY.

Perturbation Type Method Key Parameters
Typo (Character-level) Random character

deletion,
substitution,
insertion, or
repetition inside
words

∼5 edits per text

Word Deletion Randomly remove
words

∼5 deletions per
text

Word Swap Randomly swap the
positions of words

∼5 swaps per text

Extraneous Insertion Insert irrelevant
distractor tokens
(“cheap”, “sale”,
“free shipping”)
into the text

∼5 insertions per
text

Tiered Perturbation Combination of
typo, deletion, and
swap perturbations

2–3 edits of each
type per text

which is a combination of all the single noises. The real
world can contain multiple noises in a single text, to emulate
that scenario and also to test the robustness of VLMs under
challenging circumstances, a tiered text noise was created.
Table II lists the 5 noise types and the corresponding methods
and parameters. Table III displays a sample original text and
the 5 noisy texts based on the noise applied. In the paper, the
original text will be referred to as clean text.

C. Embedding and Retrieval Model

In this study, five VLMs were used to assess robustness
under noise. The VLM’s vision encoder was used to encode
the clean and noisy images; whereas the clean and noisy text
were encoded using the text encoder. All VLMs were used
from the Hugging Face platform. The five VLMs and their
Hugging Face variants are as follows:

1) CLIP: openai/clip-vit-base-patch32
2) AltCLIP: BAAI/AltCLIP
3) FashionCLIP: patrickjohncyh/fashion-clip

TABLE III
QUALITATIVE EXAMPLE OF TEXTUAL PERTURBATIONS APPLIED TO A

PRODUCT DESCRIPTION.

Perturbation Type Example Text
Original white silk blouse with a high collar and long

sleeves. the blouse has a button-down front
and a loose fit. the material is silky and
smooth to the touch.

Typo white silk blouse with a high collar and long
sleeves. the blouse has a button-down front
aod a loose fit. the material is silky and
smoqoth to te touch.

Word Deletion white silk with a high collar and long
sleeves. blouse has button-down front loose
fit. the material is silky and smooth to the
touch.

Word Swap white silk blouse with a fit. collar and long
the the blouse sleeves. a button-down front
and a loose high has the is and silky smooth
to material touch.

Extraneous Insertion white silk blouse with a high collar and
long sleeves. the blouse has a best button-
down front free shipping and best a loose
fit. the material is silky and smooth sale to
the touch. sale

Tiered Perturbation white and blouse wilth a high collar siik
loose the has blouse button-down front and
a long fit. the material is silky and smoooth
to the touch.

4) SigLIP: google/siglip-base-patch16-224
5) SigLIP-2: google/siglip2-base-patch16-224

D. Evaluation Setup

The framework evaluates the retrieval performance in multi-
ple scenarios: clean text → noisy image, noisy image → clean
image and noisy text → clean image.

Recall@K: for a given input query, the top-k retrieved
results were compared with the ground truth data depending
on the retrieval scenario. The k values chosen for the study
are 1, 5 and 10. This is a basic and fundamental method to
evaluate the retrieval results.

In addition to retrieval accuracy, the study also examines
how stable the model representations remain under differ-
ent noise conditions. This was measured using the mean



Fig. 1. Example original image and its 13 perturbed variants using atomic and composite visual noise types.

cosine similarity between clean and perturbed embeddings.
The metric provides a simple way to observe whether a
model preserves the overall direction of its feature space when
exposed to visual or textual distortions. Although Recall@K
reflects changes in ranking performance, cosine similarity
offers a complementary view of embedding consistency at the
representation level.

Together, Recall@K and cosine similarity provide comple-
mentary insights: one reflects retrieval accuracy, while the
other captures representational stability. This pairing enables
a more interpretable understanding of robustness, particularly
for models whose embeddings remain locally consistent yet
lose alignment under global retrieval ranking.

III. RESULTS

A. Recall@K analysis for clean text → noisy image retrieval

The SigLIP family of models performed the best across
all the various noise types. FashionCLIP’s performance was
better than AltCLIP and CLIP, however, it lagged behind
the SigLIP family of models. AltCLIP performed better than
CLIP; however, it lagged behind the other models. Across all
the models, the atomic noises Salt-and-Pepper, Color Jitter,
Grayscale and Motion Blur had the most negative impact on
the retrievals. On expected lines, the performance of all the
models dropped significantly in the tiered noises, especially

the tier hard. Even though SigLIP-2 performed the best on the
hard tiered noise, it’s recall dropped by 68.17%, 62.16%, and
58.17% at recall levels 1, 5 and 10 respectively. The detailed
recall values can be found in Table IV.

B. Recall@K analysis for noisy image → clean image re-
trieval

SigLIP-2’s performance was best across all the noise types
and recall levels followed by SigLIP. FashionCLIP’s perfor-
mance was better than AltCLIP and CLIP, however, it lagged
behind the SigLIP family of models. AltCLIP performed better
than CLIP however, it lagged behind remaining models in the
study. The atomic noises Salt-and-Pepper and Motion Blur had
the most degradations in the retrieval. The atomic noises Oc-
clusion, Perspective Warp and Fog had the least degradations
in the retrieval, with the SigLIP family of models showcasing
recall@1 between 0.98-1 for these atomic noises. On expected
lines, the recall performance dropped significantly in the tiered
noises across all the models. Even though SigLIP-2 performed
the best on the hard tiered noise, it’s recall dropped by 89.70%,
81.10%, and 75.60% at recall levels 1, 5 and 10 respectively,
when compared to the baseline recall of 1.00. The detailed
recall values can be found in Table V.



TABLE IV
RETRIEVAL PERFORMANCE (RECALL@K) OF FIVE VLMS FOR THE CLEAN TEXT → NOISY IMAGE SCENARIO ACROSS 13 VISUAL NOISE TYPES.

Noise Type CLIP AltCLIP FashionCLIP SigLIP SigLIP-2
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Clean 0.087 0.214 0.297 0.163 0.361 0.473 0.242 0.484 0.597 0.342 0.626 0.737 0.333 0.621 0.734
Gaussian Noise 0.060 0.150 0.212 0.118 0.265 0.349 0.152 0.322 0.409 0.288 0.547 0.656 0.279 0.545 0.655
Salt-and-Pepper 0.038 0.102 0.147 0.079 0.192 0.262 0.111 0.240 0.315 0.218 0.436 0.539 0.206 0.424 0.529
Occlusion 0.061 0.166 0.231 0.120 0.280 0.382 0.177 0.368 0.468 0.327 0.610 0.719 0.319 0.599 0.716
Gaussian Blur 0.067 0.168 0.234 0.117 0.272 0.361 0.182 0.392 0.489 0.282 0.539 0.650 0.274 0.546 0.662
Color Jitter 0.044 0.117 0.171 0.094 0.223 0.299 0.120 0.271 0.352 0.222 0.446 0.549 0.220 0.448 0.558
Grayscale 0.036 0.101 0.146 0.077 0.185 0.262 0.113 0.258 0.348 0.189 0.408 0.521 0.187 0.410 0.528
Motion Blur 0.047 0.115 0.164 0.086 0.202 0.274 0.126 0.280 0.368 0.211 0.440 0.550 0.212 0.442 0.556
Perspective Warp 0.079 0.208 0.286 0.158 0.354 0.463 0.227 0.465 0.572 0.334 0.620 0.730 0.321 0.599 0.713
Rain (Weather) 0.054 0.141 0.197 0.117 0.268 0.353 0.161 0.335 0.426 0.276 0.535 0.642 0.254 0.505 0.615
Fog (Weather) 0.063 0.161 0.224 0.129 0.291 0.377 0.184 0.387 0.492 0.292 0.563 0.669 0.293 0.567 0.677
Tiered Noise (Easy) 0.033 0.089 0.129 0.065 0.151 0.208 0.086 0.193 0.254 0.166 0.344 0.437 0.168 0.352 0.444
Tiered Noise (Med.) 0.014 0.038 0.058 0.033 0.083 0.116 0.042 0.102 0.139 0.087 0.203 0.270 0.087 0.199 0.267
Tiered Noise (Hard) 0.011 0.036 0.056 0.031 0.077 0.110 0.026 0.061 0.084 0.095 0.214 0.283 0.106 0.235 0.307

TABLE V
RETRIEVAL PERFORMANCE (RECALL@K) OF FIVE VLMS FOR THE NOISY IMAGE → CLEAN IMAGE SCENARIO ACROSS 13 VISUAL NOISE TYPES.

Noise Type CLIP AltCLIP FashionCLIP SigLIP SigLIP-2
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Gaussian Noise 0.289 0.394 0.441 0.393 0.526 0.585 0.688 0.803 0.845 0.778 0.893 0.923 0.840 0.939 0.960
Salt-and-Pepper 0.176 0.274 0.318 0.251 0.376 0.434 0.387 0.522 0.578 0.602 0.753 0.802 0.703 0.862 0.905
Occlusion 0.790 0.890 0.913 0.857 0.917 0.933 0.919 0.952 0.962 0.995 0.999 0.999 0.997 0.999 0.999
Gaussian Blur 0.602 0.745 0.793 0.639 0.764 0.808 0.861 0.943 0.965 0.940 0.983 0.988 0.975 0.996 0.998
Color Jitter 0.480 0.588 0.633 0.560 0.660 0.697 0.747 0.820 0.843 0.786 0.867 0.889 0.856 0.914 0.927
Grayscale 0.677 0.825 0.870 0.695 0.828 0.871 0.873 0.948 0.965 0.969 0.992 0.996 0.984 0.999 0.999
Motion Blur 0.235 0.331 0.375 0.263 0.363 0.407 0.541 0.671 0.723 0.679 0.819 0.860 0.735 0.866 0.903
Perspective Warp 0.853 0.937 0.957 0.897 0.957 0.970 0.968 0.994 0.997 0.979 0.996 0.997 0.991 0.999 0.999
Rain (Weather) 0.379 0.490 0.536 0.498 0.628 0.672 0.729 0.835 0.873 0.809 0.907 0.931 0.871 0.952 0.968
Fog (Weather) 0.915 0.972 0.983 0.925 0.974 0.983 0.986 0.998 0.999 0.989 0.998 0.999 0.998 1.000 1.000
Tiered Noise (Easy) 0.036 0.070 0.092 0.065 0.110 0.137 0.146 0.248 0.295 0.246 0.394 0.462 0.270 0.442 0.525
Tiered Noise (Med.) 0.019 0.039 0.052 0.036 0.067 0.084 0.146 0.226 0.264 0.216 0.331 0.381 0.255 0.373 0.424
Tiered Noise (Hard) 0.006 0.014 0.021 0.012 0.027 0.038 0.024 0.042 0.055 0.056 0.115 0.150 0.103 0.189 0.244

C. Recall@K analysis for noisy text → clean image retrieval

SigLIP performed the best in majority of the noise types
and recall levels closely followed by SigLIP-2. FashionCLIP’s
performance was better than AltCLIP and CLIP, however,
the performance lagged behind the SigLIP family of models.
AltCLIP performed better than CLIP, however, it’s perfor-
mance lagged behind the remaining models. The atomic noises
didn’t have any significant impact on the retrieval results when
compared to the baseline. For example, in the atomic noise
typo, SigLIP’s recall@1 dropped by 11.40%, whereas CLIP’s
recall@1 dropped by 17.24%. In the tiered noise, we can see
the negative impact on the retrieval. For example, SiGLIP’s
performance dropped by 18.13%, 14.22% and 12.08% are
recall levels 1, 5 and 10 respectively. The detailed recall values
can be found in Table VI.

D. Embedding Stability Analysis

To better understand how noise affects the underlying
representations, mean cosine similarity was computed be-
tween clean and noisy embeddings for both image and text
inputs (Tables VII and VIII). Higher values indicate that a
model’s embeddings remain locally consistent under pertur-
bation, although such stability does not always translate to
stronger retrieval performance. CLIP, for instance, preserves

relatively high cosine similarity across most visual noise types
yet shows the largest drop in Recall@K, suggesting that
its representations remain directionally stable but lose their
global alignment. In contrast, the SigLIP variants maintain
comparable or slightly lower similarity values while exhibiting
steadier retrieval accuracy, implying that they deform more
coherently in the latent space. Text perturbations resulted in
smaller changes overall, indicating that the language encoders
were less sensitive to surface-level distortions such as typos,
insertions, or word swaps. These findings underline that sta-
bility and robustness are not strictly correlated—high local
similarity does not always ensure resilient retrieval rankings,
highlighting the importance of analyzing both perspectives.

IV. FUTURE WORK

The current study was performed at a single noise severity
level for both images and text, the future work will involve
expanding the severity levels and evaluating the robustness
of VLMs across multiple severity levels. Additionally the
framework will be expanded to study the impact of image
noises on the performance of generative VLMs (e.g., BLIP
models [11], [12], LLaVA models [13], [14], Qwen-VL mod-
els [15], [16], etc.), especially on tasks such as captioning
and question-answering. FashionCLIP consistently performed
better than CLIP and AltCLIP. The next step would be to



TABLE VI
RETRIEVAL PERFORMANCE (RECALL@K) OF FIVE VLMS FOR THE NOISY TEXT → CLEAN IMAGE SCENARIO ACROSS 5 TEXTUAL PERTURBATION

TYPES.

Text Noise Type CLIP AltCLIP FashionCLIP SigLIP SigLIP-2
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Clean 0.087 0.214 0.297 0.163 0.361 0.473 0.242 0.484 0.597 0.342 0.626 0.737 0.333 0.621 0.734
Typo 0.072 0.186 0.264 0.145 0.326 0.432 0.206 0.426 0.536 0.303 0.575 0.689 0.282 0.557 0.673
Deletion 0.073 0.189 0.266 0.140 0.315 0.416 0.202 0.423 0.524 0.292 0.552 0.665 0.289 0.553 0.667
Swap 0.077 0.195 0.278 0.146 0.333 0.439 0.220 0.453 0.561 0.313 0.581 0.697 0.291 0.566 0.680
Insertion 0.081 0.204 0.285 0.141 0.324 0.430 0.225 0.449 0.559 0.322 0.604 0.714 0.287 0.567 0.681
Tiered 0.068 0.178 0.248 0.130 0.301 0.400 0.192 0.404 0.509 0.280 0.537 0.648 0.265 0.525 0.642

TABLE VII
MEAN COSINE SIMILARITY BETWEEN CLEAN AND NOISY IMAGE

EMBEDDINGS FOR EACH VISUAL PERTURBATION.

Noise Type CLIP AltCLIP FashionCLIP SigLIP SigLIP-2
Gaussian Noise 0.856 0.878 0.823 0.857 0.881
Salt & Pepper 0.815 0.823 0.742 0.810 0.836
Occlusion 0.913 0.897 0.874 0.943 0.952
Gaussian Blur 0.924 0.913 0.886 0.881 0.920
Color Jitter 0.887 0.893 0.842 0.860 0.894
Grayscale 0.934 0.925 0.886 0.913 0.933
Motion Blur 0.842 0.834 0.804 0.834 0.866
Perspective Warp 0.949 0.946 0.897 0.928 0.947
Rain 0.873 0.892 0.835 0.850 0.872
Fog 0.958 0.947 0.939 0.929 0.953
Tiered (Easy) 0.789 0.782 0.666 0.750 0.783
Tiered (Medium) 0.713 0.741 0.643 0.703 0.730
Tiered (Hard) 0.682 0.707 0.509 0.660 0.713

TABLE VIII
MEAN COSINE SIMILARITY BETWEEN CLEAN AND NOISY TEXT

EMBEDDINGS FOR EACH TEXTUAL PERTURBATION.

Text Noise Type CLIP AltCLIP FashionCLIP SigLIP SigLIP-2
Typo 0.946 0.963 0.957 0.925 0.938
Deletion 0.949 0.960 0.958 0.933 0.940
Swap 0.946 0.965 0.966 0.936 0.948
Insertion 0.934 0.968 0.940 0.918 0.929
Tiered 0.920 0.942 0.939 0.904 0.925

fine-tune the SigLIP family of models on fashion data and
evaluate whether the fine tuned SigLIP models can outperform
the current results. While the current study has incorporated
embedding stability analysis using cosine similarity, future
work will explore additional representation-level diagnostics
to better characterize how models behave under varying noise
intensities. In the long term, the objective is to release the
framework as a lightweight Python package that can be used
in a plug-and-play manner to assess the robustness of retrieval
systems under noise. In essence, NoiseStat serves as an
initial step toward a standardized, transparent benchmark for
retrieval robustness—its lightweight nature encourages broader
adoption and community validation.
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