Enhancing Product Recommendations with Multi-Modal LLMs

Babaniyi Olaniyi – Barcelona, Spain ISIR-eCom 2025 Workshop (Held with ICDM) – Nov 12, 2025

GitHub: github.com/babaniyi/multimodal_llm_recsys_amazon **Email:** horlaneyee@gmail.com

Motivation

- E-commerce data includes text, images, and user interactions.
- Traditional recommenders rely on sparse signals (IDs, ratings).
- Multimodal fusion + LLMs can improve personalization and scalability.
- Objective: adapt GPT-2 to predict next items using text and image signals.

Research Question

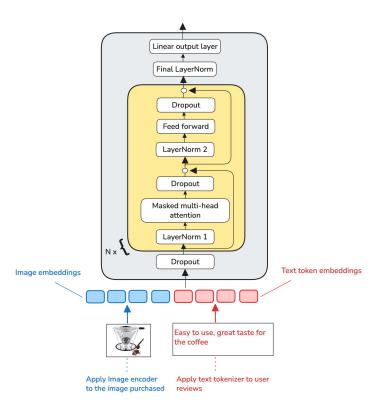
How can we repurpose a large language model (LLM) to:

- Predict the next item in a user's purchase sequence
- Fuse text and image information efficiently
- Improve accuracy, coverage, and diversity under realistic,
 resource-constrained training conditions

Model Overview

MM-GPT2Rec = Multimodal Embedding + GPT-2 Decoder

- Text embedding (BPE 768-dim) + Image embedding (ResNet18 256-dim).
- Concatenated and projected to 1024-dim to match GPT-2 hidden size.
- Autoregressive modeling: next product ≈ next word prediction.
- Model learns from sequences of user purchases and predicts the next likely product.



Dataset and Preprocessing

Amazon Product Dataset

(Appliances, Digital Music, Gift Cards, Health & Personal Care).

- ~400K user-item interactions; users with ≥5 interactions.
- Text: review titles + content;

Image: main product image.

Train/Val/Test = 75/15/10 temporal split; implicit feedback (purchase/review = interaction)

Architecture

- Base: GPT-2 Medium (345M params, 24 layers, 16 heads).
- Input embeddings replaced with multimodal item embeddings (text + image).
- LoRA fine-tuning with tied embeddings; cross-entropy next-item loss.
- Hardware: NVIDIA L4 GPU (24GB VRAM), 8 hours training time.
 (Ran using Lightning AI platform)

Results Summary

- MM-GPT2Rec: HR@5 = 0.833,
 Precision@5 = 0.297, Coverage = 0.715,
 Diversity = 0.749.
- Multimodal baselines (VBPR, DeepCoNN, SASRec): HR@5 ≈ 0.456.
- Traditional methods (Content-Based, MF,
 CF): HR@5 < 0.1.
- LLM-based model outperforms baselines by 83% in hit rate and doubles catalog coverage.

Baseline Comparison Results at cutoff k = 5. Higher is better for all metrics.

Model	HR@5	P@5	NDCG@5	MRR	MAP@5	Coverage	Diversity	Novelty
MM-GPT2Rec (Ours)	0.833	0.297	0.220	0.207	0.113	0.715	0.749	-11.042
Multimodal Baselines								
VBPR	0.456	0.455	0.456	0.455	0.457	0.314	0.793	-8.072
DeepCoNN	0.456	0.455	0.456	0.455	0.457	0.367	0.793	-8.088
NRMF	0.455	0.455	0.456	0.455	0.457	0.310	0.793	-8.086
SASRec	0.456	0.455	0.456	0.455	0.457	0.405	0.793	-8.066
Traditional Baselines								
Content-Based	0.080	0.066	0.129	0.075	0.033	0.267	1.000	-3.275
Matrix Factorization	0.093	0.020	0.039	0.064	0.010	0.056	0.992	-4.677
Hybrid	0.080	0.020	0.051	0.073	0.010	0.242	0.953	-3.528
Collaborative Filtering	0.011	0.002	0.007	0.007	0.001	0.008	0.907	-3.756
Popularity	0.034	0.007	0.006	0.010	0.002	0.000	0.000	-6.237

 ${\bf TABLE~II}\\ {\bf Ablation~Study~Results.~Values~reported~from~actual~experimental~runs~on~full~datasi}\\$

Configuration	HR@5	Precision@5	MRR	NDCG@5	
Text-only	0.137	0.031	0.121	0.132	
Multimodal (Concatenation)	0.049	0.010	0.046	0.047	
Multimodal (Weighted)	0.049	0.010	0.046	0.047	
Multimodal (Attention)	0.049	0.010	0.046	0.047	

Ablation Insights

Variant	HR@5	MRR
Text-only	0.137	0.121
Multimodal (concat / weighted / attention)	0.049	0.046

- Text drives most signal quality; images add noise under naive fusion.
- Image features may add noise; need better cross-modal alignment
- Yet full MM-GPT2Rec outperforms all baselines → transformer learns richer patterns

Qualitative Examples

User purchased

Range Kleen Oven Knob Kit

Next purchases

- Lifetime Appliance 3362624 Timer Knob Compatible with Whirlpool Washer,
- WaterSentinel WSG1 Refrigerator Replacement Filter,
- 3. WaterSentinel WSG-1 Refrigerator Replacement Filter (3-Pack)

Predicted next purchase

1. Dryer Igniter

Prediction is in the same "appliance repair categories"

Qualitative Examples

User purchased

1. Mist LT800P LG Refrigerator Water Filter (3 Pack)

Next purchases

- Tier1 ADQ36006101 Refrigerator Water & Air Filter Combo 3-pk
- Replacement for LG LT700P Water Filter,
- 3. NISPIRA Refrigerator Air Filter Compatible with LG LT120F

Predicted next purchases

- 1. GENUINE Frigidaire 242252702 Valve,
- 2. GE MWF Refrigerator Water Filter

"Model shows recognition of water filtration system components."

Traditional models struggle to capture these nuanced relationships as effectively.

MM-GPT2Rec shows category-level and functional understanding of items.

Discussion

- **Strengths:** high hit rate and coverage, cold-start robustness, multimodal reasoning.
- Weaknesses: moderate ranking precision, limited novelty, naive image fusion.
- Demonstrates feasibility of LLM-based multimodal recommenders under resource limits.

Limitations & Future Work

- Improve image—text fusion (cross-attention, CLIP-based alignment)
- Scale to larger LLMs (GPT-4, LLaMA-3)
- Explore explainable or conversational recommendation
- Evaluate on other domains (movies, news, health)

Conclusion

- Treating product sequences as language enables contextual, scalable recommendation.
- MM-GPT2Rec captures purchase intent better than traditional models.
- LLMs can power adaptive, context-aware recommendation when paired with multimodal inputs.
 - → MM-GPT2Rec = first step toward foundation-model-based recommendation.

Thank you

GitHub: github.com/babaniyi/multimodal_llm_recsys_amazon

LinkedIn: @babaniyi