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Overview



From Items to Composition : How do we 
retrieve sets that make sense together?

• Traditional retrieval: single-item ranking (top-k).
• Human decisions: composite — sets, bundles, plans.
• Example: vacation planning, product bundling, team formation.
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Composite Retrieval

Composite retrieval is the study of methods for building, 
retrieving and ranking composite responses from a set of 
atomic ones 

q Online shopping
q Web search
q Recommendation

1.Basu Roy, Senjuti, et al. "Constructing and exploring composite items." Proceedings  of the 2010 
ACM SIGMOD International Conference on Management of data. 2010.
2. Amer-Yahia, Sihem, and Senjuti Basu Roy. "Interactive exploration of composite items." 
International Conference on Extending Database Technology (EDBT). 2018.
3. Amer-Yahia, Sihem, and Senjuti Basu Roy. "From Complex Object Exploration to Complex 
Crowdsourcing." Proceedings of the 24th International Conference on World Wide Web. 2015.
4. Roy, S. B., Das, G., Amer-Yahia, S., & Yu, C. (2011, April). Interactive itinerary planning. In 2011 
IEEE 27th International Conference on Data Engineering (pp. 15-26). IEEE.
5. Roy, S. B. (2019, January). Human-in-the-loop Exploration of Composite Items. In Proceedings of 
the ACM India Joint International Conference on Data Science and Management of Data (pp. 367-
367).



Composite Item Retrieval 
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Star Retrieval

Snowflake Retrieval
Chain Retrieval



n Expressed as a single-objective optimization problem with constraints
n Input: a set of items, constraints

n Output: k-Composite Items (CIs)

n Constraints
q Compatibility between items forming a CI (usually pairwise)
q Validity: total cost of items forming a CI (e.g., price, time)
q Size: in terms of number of items forming a CI
q Type coverage: multiplicity bounds on item types in a CI

n Objective function 
q Coverage of items
q Diversity of CIs
q Additive/Coverage-based/Complex

Properties of Composite Item Retrieval
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Problem Name CI Shape Hardness Reduction

Composite k-Package 
Recommendation (RecSys 2010)

star NP-hard Remains hard, even for k=1, reduction from the 
Knapsack problem

Chain retrieval  (ICDE 2011) chain NP-hard Rooted Orienteering problem
KOR Query (VLDB 2012) chain NP-hard Weight Constrained Shortest Path Problem
Diverse k-composite Package 
retrieval (TKDE 2014)

snowflake NP-hard Maximum Edge Subgraph Problem

TourRec: Additive Tour (WSDM 
2014)

chain NP-hard Traveling Salesman Problem (TSP)

TourRec: CoveringTour snowflake NP-hard Maximum-k Coverage Problem
Star retrieval (SIGMOD 2010)
a. maximal package retrieval
b. Summarization
c. Diversified ordering

star #P-Complete

NP-hard

NP-hard

Requires solving the Counting Problem

Reduction from the Set Cover

Reduction from the TSP

The Problems and The Algorithms 



To Summarize – the Core Idea

Foundations: submodular 
optimization, skyline queries, 
top-k aggregation.

Earlier focus: efficiency, 
scalability, static user intent.

Assumptions: structured data, 
clear scoring functions.



PART II: LLM Disruptions
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LLM Disruptions
• Multimodal data

– 80-90% of enterprise data is 
unstructured

• Personalization
– Implicit understanding of user 

intent
– User defined scoring function

• Contextual reasoning
– Bring context in understanding 

user intent
• Score of attributes not readily 

available 
– Requires external oracle

Trade-0ff: Quality, Computational cost, oracle cost



LLM Disruption — What Changes

Traditional Retrieval LLM-Era Retrieval

Explicit query and scoring function Implicit, learned understanding of user intent

Deterministic data and fixed schema Probabilistic, context-dependent reasoning

Known, static utility function Dynamic, user-adaptive utility inferred from dialogue

Symbolic matching and optimization Neural inference and contextual grounding

Independent item ranking Joint reasoning across multimodal, interdependent items

Limited to retrieval Extends to explanation, synthesis, and decision-making
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PART III –Opportunities & Challenges
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Opportunities and Challenges with LLMs
• Opportunities

– Personalization: User provides intent to guide retrieval and reasoning.
– Contextual Reasoning: Enables understanding of how items relate logically or semantically.
– Leveraging LLMs: Large Language Models can be used to score subgoals and infer missing 

relationships.

• Challenges:
– Query Decomposition: Breaks complex queries into subgoals with implicit understanding of 

dependencies.
– Risk of hallucination, leading to uncertain reasoning and unreliable scores.

Computational and inference costs associated with LLM usage - Trade-off between accuracy, 
efficiency, and cost!!



Hybrid Architectures

• Allow user to express queries in 
natural language

• Convert natural language into 
objective function using AI models

• Judiciously leverage LLMs for score 
generation 

• Use classical optimizers for scoring.

Nia, Sohrab Namazi, Subhodeep Ghosh, Senjuti Basu Roy, and Sihem Amer-Yahia. "Personalized Top-k Set Queries Over Predicted Scores."  arXiv preprint arXiv:2502.12998 
(2025).
Nikookar, S., Namazi Nia, S., Basu Roy, S., Amer-Yahia, S., & Omidvar-Tehrani, B. (2025). Model reusability in Reinforcement Learning. The VLDB Journal, 34(4), 41
Large Language Models Empowered Personalized Web Agents (WWW’25) — introduces LLM-based personalized web agents capable of adaptive, context-aware 
recommendations through natural language reasoning



Proposed Framework
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“Show me top-3 
sustainable cocktail attire 
that are Stylish, not 
overly formal; 
flattering but not flashy.”

Understand 
user intent A computational loop 

leveraging LLM

Judiciously involve LLM to 
return score from multimodal data Return score (handle 

uncertainty)

Perform 
combinatorial 
optimization

Output

Objective 
function 
and 
constraints

Nia, Sohrab Namazi, Subhodeep Ghosh, Senjuti Basu Roy, and Sihem Amer-Yahia. "Personalized Top-k Set Queries Over Predicted Scores."  arXiv preprint (2025).
Nikookar, S., Namazi Nia, S., Basu Roy, S., Amer-Yahia, S., & Omidvar-Tehrani, B. (2025). Model reusability in Reinforcement Learning. The VLDB Journal, 34(4), 41



A Reinforcement Learning Based 
Framework — Understanding User Intent
Convert user intent into interpretable components:

• Goal type → optimization, retrieval, recommendation, 
classification, reasoning. “sustainable cocktail attire that are 
Stylish, not overly formal;  flattering but not flashy” → multi-
objective optimization.

• Objective dimensions → relevance, diversity, serendipity, etc.
• Constraint type → hard constraints (“must not exceed certain 

price”) vs soft preferences (“prefer certain colors”).
𝐼𝑛𝑡𝑒𝑛𝑡 =	< 𝐺𝑜𝑎𝑙	𝑇𝑦𝑝𝑒, 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠, 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠,𝑊𝑒𝑖𝑔ℎ𝑡𝑠 >

A B C D
).
Nikookar, S., Namazi Nia, S., Basu Roy, S., Amer-Yahia, S., & Omidvar-Tehrani, B. (2025). Model reusability in Reinforcement Learning. The VLDB Journal, 34(4), 41



• Task : Retrieve relevance and diversity 
score of fashion brands

• Scoring function

Fashion brands

Relevance Diversity

Leverage LLM in the Computational Loop

How can we select the most informative partial scores from the 
LLM to maximize accuracy and minimize latency?



4 Computational Steps
Reason on the score 
of the candidates
•Reason on score bounds as 

opposed to full score 

Reason on the winner 
probabilistically
•What is the probability of a 

composite item to be the top-1 set 
based on the objective function

Identify the next best question to be asked to 
LLM

which component of the unknown score for which items 
queried from the LLM next 

Incorporate LLM response 
in the loop
•LLM can hallucinate and provide 

non-deterministic response

Nia, Sohrab Namazi, Subhodeep Ghosh, Senjuti Basu Roy, and Sihem Amer-Yahia. "Personalized Top-k Set Queries Over Predicted Scores."  arXiv preprint arXiv:2502.12998 
(2025).
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Algorithmic Framework
Repeat Until Stopping condition is reached
• Discrete LLM Response -> Stop when only one single candidate is left
• Range LLM response ->Stops when confidence ≥ threshold θ

1. Compute score bounds (LB, UB) of candidate CIs -> Prune candidates based on bounds
     2. Decide winner probabilistically 

      
   
 3. Ask Next Question to LLM based on uncertainty reasoning
 

4. Process LLM response back in the loop



Candidates are Independent
• Independence model: uses 

convolution. Time Complexity: Θ(M² 
× m)

• Memory: Linear in m
• Strengths: Efficient, lightweight, 

scalable for large candidate sets.
• Challenges: Independence assumption 

does not hold when candidates 
overlap

Candidates are Dependent

• Models shared entities using 
conditional probabilities.

• Optimization: Computes probabilities 
pairwise, avoiding O(mᴹ) explosion.

• Time Complexity: Θ(M² × m²)
• Space Complexity: O(m²)
• Strengths: Accurately models 

dependencies.
• Challenges: High computation and 

storage cost, limited parallelizability.

Scalability  Challenges in Probabilistic 
Modeling for Finding Winner



Overall Scalability Challenges

• Quadratic growth with candidate count (M).
• Quadratic convolution cost with discretization size (m).
• Overlapping entities → dependency propagation → cost escalation.
• Maintaining PDFs and bounds adds compute/memory overhead.
• Multi-modal data intensifies scalability constraints.
• Trade-off: ProbInd = efficient but approximate; ProbDep = accurate but expensive.
• Balancing scalability vs. dependency modeling is key.



Experimental Evaluation
• Datasets: Hotels, Movies, Yelp Businesses

• LLMs: GPT-4o mini, Llama-3-70B

• Metrics: #probes, cost, latency, scalability, user study

• Example scoring functions: (F1–F7) with Relevance & Diversity pairs

• Baselines: Random, Full-Probe



Experimental Evaluation
• Key Takeaways:

1. 10× fewer LLM probes vs baselines
2. Same top-k accuracy (100% recall)
3. Monetary Cost ↓ by order-of-magnitude (e.g., $14 → $1)
4. ProbDep slightly better but slower than ProbInd

• User study:
• 80–95% of users preferred our recommendations (Movies dataset)



IV: Vision - From Retrieval to Responsible Reasoning
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Key Dimensions

• Ambiguity and Intent Understanding
– Translating user queries into well-defined reasoning objectives.
– Handling underspecified or conflicting goals in natural language.
– Balancing task completion with ethical interpretation of intent.

• Multi-Modal Integration
– Combining heterogeneous sources (text, image, structured data, sensor signals).
– Aligning representations across modalities for coherent reasoning.

• Fairness, Bias, and Explainability
– Preventing propagation of bias from retrieved data to reasoning outcomes.
– Designing explainable reasoning chains that justify conclusions.
– Incorporating fairness constraints into reasoning pipelines.
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• Robustness and Uncertainty Handling
– Propagating uncertainty from retrieval through multi-step reasoning.
– Avoiding overconfidence in generative or inferential steps.
– Probabilistic reasoning under incomplete or noisy evidence.

• Scalability and Efficiency
– Moving from single-query retrieval to continuous reasoning over dynamic data streams.
– Integrating symbolic and neural reasoning efficiently.
– Maintaining real-time performance under large-scale multi-modal data.
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Reasoning with AI in Big Data Analytics Lab
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Project 1: Human AI Agile Symbiosis 
Sponsor: Department of Defense
Goal: A framework to enable proactive, 
context-dependent decision support with 
enhanced operational capability under 
uncertainty
Project 2: Predictive Modeling for Ship 
Scheduling (PASS)
Sponsor: Department of Defense
Goal:  Human Compatible Decision Support 
Systems for Planning and Actual 
Maintenance of US Naval Ships
Project 3: Form Curation While Creation
Sponsor: Department of Defense
Goal:  Leverage gen AI to generate forms to 
write natural language texts that aid sailors



Key Collaborators
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Thank You!
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