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ABSTRACT
Review of non-taxable products is an important internal audit which
is carried out by majority of e-commerce stakeholders. This process
usually cross checks the initial taxability assignments to avoid any
unnecessary penalties incurred to the companies during the actual
audits by the respective state compliance teams/tax departments.
In order to handle millions of products sold online on e-commerce
websites, we can adopt a machine learning solution to scale up
the processing of products and make faster taxability predictions.
However, a fine-grained classification cannot be achieved by visual
analysis alone(product images). Often, the relevant information is
present in the form of text on the product title, description & feature
bullets etc. In this paper, we put forward a Multimodal Siamese
based deep neural network which is capable of taking inputs from
both product images and other textual content associated with it
and predict the final output taxability. We show that this Multi-
modal architecture outperforms single modality networks which
are only based on vision or language by a margin of atleast 5-6%.
Furthermore, we reinforce confidence in our taxability outputs by
incorporating an explainability wrapper around our model. This
feature aids in establishing trust in the accuracy and reliability of
our taxability predictions.
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Explainable AI(XAI), Multimodality, E-Commerce Audit Taxability
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1 INTRODUCTION
Tax audit is a process which involves an independent body examin-
ing the financial accounts of an organization to authenticate fair
dealings of a firm. A healthy audit feedback loop along with tax
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compliance leads to increased productivity for a better and effi-
cient tax collection model. It aims to reduce the various problems
faced by the tax authorities such as tax evasion, tax avoidance and
other tax irregularities. The Tax department is responsible for pay-
ing tax obligations to governments and tax authorities around the
world. In case of transactional tax, the e-commerce companies are
responsible for collecting tax from consumers in accordance with
the statues/regulation and pay it to Tax authorities. Every year, an
external authority from respective state/country compliance team
visits e-commerce companies to perform an audit where they cross
check if the products sold are correctly taxed or not.

These e-commerce companies hosts millions of products coming
from various vendors across the globe. Even when the products look
similar or belong to the same category, their taxability(Taxable /
Non-Taxable) might differ depending upon themanufacturing ingre-
dients, description, type of audience its intended to, state/country
in which they are sold, price bracket etc.

Usually all the e-businesses have an automated system in place
to determine the product tax percentages. These systems are error
prone considering they have rules/systems working to differentiate
across minute product tax percentage slabs (e.g.: 5%, 8%, 15% etc.).
As a result there exists an internal audit team which manually
reviews the product taxability(just at a level of Taxable/Non-Taxable
i.e., if any tax rate should be applicable or not in the first place).
Since this process is manual, they mainly review the high-value
products(based of net selling price) which are marked at 0%(Non-
Taxable) by these automated systems to avoid penalty in the actual
audit by respective state/country tax compliance teams. The goal
of an internal audit is to detect products which are marked at 0%
tax, but should be taxed. This process helps to save the tax these
e-commerce companies have to pay to the authorities, on behalf of
its customer and any additional penalties as a result of violation of
tax laws.

In this paper, we explore the following question - is it possible to
determine the taxability of an product across various states (refer:
table 1) in the US(reason for selection mentioned in the section 3)
by leveraging the different attributes of a given product(product Im-
ages, OCR text from images, product description, title & feature bul-
lets etc.) using deep learning based methods. We finally introduce
a multimodal siamese based deep network that learns from both
the product images & other textual / language based attributes(title,
description, feature bullets, OCR extracted text from images etc.).
We design an end-to-end pipeline for feature extraction and fusion
from image and textual inputs. We show that combining both the
image(visual) and textual features to train the model outperforms
single modality vision & language based baseline architectures in
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both accuracy and rate of convergence. Furthermore, with our ex-
plainability wrapper we output keywords from the product details
which have led the model drive its decision towards a particular
taxability. This thus ultimately helps the internal teams to justify
the product taxability to external auditors.

2 RELATEDWORK
Next, we discuss a quick overview of previous related works and
reference topics. The classification problem was one of the first
topics where modern deep learning was applied. There are several
existing vision based deep networks for image classification which
takes visual clues from images to predict the final output category.
A major breakthrough in image classification domain came in 2012
with the introduction of AlexNet [7]. Some other noval architec-
tures that were introduced after that include VGG [16] , ResNet [6],
Inception [20], [21] and EfficientNet [22]. In this work we leverage
both ResNet [6] & EfficientNet [22] as single modality vision based
baseline architectures to solve the classification problem at hand.
These models focus on extracting strong visual features from the
images to classify the product based on their contrasts, objects and
other visual feature clues present on the images.

On the other hand, text-based classification has long been in-
vestigated. We now look into various related works which used
language based architecture to train models for category classi-
fication as down stream tasks. Several models like MPNET [17],
BERT [2], XLNET [24], RoBERTa [10] which are pre-trained on
on large-scale datasets(over 200 GB text corpa) have been lever-
aged in several down-streaming tasks by fine tuning these models
with custom layers depeding upon the task in hand. We picked
architectures like BERT & MPNET as single modality language
base baseline networks. We take textual input coming from the
product title, description, feature bullets & OCR text extracted from
the product images and train these network on a down stream
classification task to predict the final output categories(refer: table
2).

Some works tried to adapt the text and image based approaches
to exploit both sources of information. Two such works which
formulated generic visual-linguistic representation learning are
VisualBERT [8] and Visual-Linguistic BERT (VL- BERT) [19]. In
contrast to the above architectures, we propose a siamese based
deep network where the images and text are processed in parallel
towers of deep convolutional networks. The initial layers extract
features specific to the data type. These features are flattened and
concatenated into a single feature vector, grouping image features
and text features separately. Finally, a Dense Neural Network (DNN)
predicts the final product category from the combined feature vec-
tor. Similar works which try to exploit the Siamese base network
include [3], [23], [9], [18] which exploit these networks for Alphabet
predictions, Image Retrieval and Pattern Spotting, Object Tracking,
other text Similarity Tasks for Multiple Domains and Languages
etc.

Explainability in machine learning refers to the ability to under-
stand and interpret the decisions or predictions made by a machine
learning model. As machine learning models, particularly complex
ones such as deep neural networks, become increasingly sophis-
ticated & being used as an abstraction, making it challenging for

humans to comprehend the reasoning behind their outputs. Un-
derstanding why a model makes a specific prediction is crucial
for various reasons, including building trust in the model, ensur-
ing regulatory compliance, uncovering biases, and facilitating the
improvement of models. Explainability is especially important in
scenarios where the impact of model decisions is significant, such
as in healthcare, finance, and criminal justice.

There are several methods and techniques for achieving explain-
ability in machine learning:

(1) Interpretable Models:
• Use simpler models that are inherently more interpretable,
such as decision trees [15] or linear models.

• While these models might not always match the predictive
performance of more complex models, they are easier to
understand.

(2) Local InterpretableModel-agnostic Explanations (LIME) [14]:
• LIME [14] is a technique that approximates the decision
boundary of a complexmodel using a simpler, interpretable
model in a local region around a specific data point.

• It helps provide insights into the model’s decision-making
process for individual instances.

(3) SHapley Additive exPlanations (SHAP) [11]:
• SHAP [11] values allocate the contribution of each feature
to the prediction, providing a comprehensive understand-
ing of feature importance.

• SHAP [11] values can be used to explain the output of any
machine learning model.

(4) Partial Dependence Plots (PDP) [4] and Individual Condi-
tional Expectation (ICE) [5]:
• PDPs [4] illustrate the relationship between a feature and
the model’s prediction while keeping other features con-
stant.

• ICE [5] plots extend this concept to show the individual
predictions for different instances.

(5) Model-specific Techniques:
• Some models have built-in mechanisms for explainability.
For example, decision trees inherently provide a transpar-
ent decision-making process.

(6) Rule-based Explanations:
• Express the model’s decision logic in the form of human-
understandable rules.

(7) Attention Mechanisms:
• In the context of deep learning, attention mechanisms can
highlight the input features that are crucial for a particular
prediction.

Having said the above, Explainability is not a one-size-fits-all
concept, and the choice of method depends on the type of model,
the problem domain, and the level of detail required for explanation.
Striking a balance between model complexity and interpretability
is crucial for successfully incorporating machine learning models
into real-world applications.

3 AUDIT OVERVIEW & CHALLENGES
In this section we formulate the business scenario for which we
show various quantitative results in 6. In section 1, we mentioned
that we will determine the taxability of an product across various
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Figure 1: Example image from California Sales and Use Tax
Laws

states in the US. The reason we chose US was that each state has
its own set of taxability rules defined i.e., the taxability (taxable /
non-taxable) of an product in the mentioned states(refer: table 1)
differ depending upon various factors(manufacturing ingredients,
description, keywords etc). For e.g.: California has the following
rules and regulations defined for taxing Grocery store items - Cal-
ifornia Sales and Use Tax Law. The above document is designed
for owners, managers, and other operators of grocery stores and
provides basic information on the application of the California
Sales and Use Tax Law to grocery store sales and purchases. In
Figure:1, we show Examples of taxable and nontaxable sales(not
limited to these) in California. Considering the diverse set of prod-
uct categories which are sold on e-commerce websites, we have
come up with categories (ref: table 2) which any product can be
classified into, once we categorise the product in a state to its re-
spective category we then derive its taxability using a static map
i.e., the category to taxability for a state is a 1:1 mapping. Some of
the categories in the mentioned list are self explanatory i.e., if a
product in a state is mapped to an Exempt Clothing category then
it is non-taxable.

Usually, the manual audit process can cover only upto 10% of the
total non-taxable products for re-verification. Also, if the audit team
wants to increase the regions/states it is difficult to scale considering
all the manual rule formulations etc. The purpose of this paper is to
provide the ability to completely automate the Audit process and
cover 100% of the products in as many regions as required.

The following steps briefly describes the process followed by the
audit teams in an e-commerce setting:

• The Audit team fetches product list which are labelled as
Non-taxable either by vendors/internal rule engines.

• Shortlists the high-valued products based on net selling price.
• Goes over the product images and information on the web-
sites.

• Fetches details about the product like: Manufacturing ingre-
dients, description, feature bullets & other keywords.

• Refer the tax laws of respective region/state of audit & derive
product taxability manually based on taxability rules.

State List
Arkansas Minnesota Texas
Connecticut Utah Florida
Nevada Vermont New Jersey
Washington Indiana New York
Iowa North Carolina Wisconsin
Kansas Wyoming Kentucky
Rhode Island Oklahoma South Dakota
Tennessee Michigan Nebraska
Georgia West Virginia North Dakota
Ohio

Table 1: List of US states

4 APPROACH
We have decided to adopt a Parent → Child architecture[2 stage
process] as shown below (refer fig: 2). We pass the input features /
data source to theModel Architectures. In this case, first through the
Parent Model and then depending upon the output parent category
we select the appropriate child model and pass the product though
it and make the final prediction.

In the below diagram (refer fig: 3) you can see the parent cate-
gories filled in black and the corresponding child categories above
them. So basically as a first level, what we have done is grouped
categories with similar semantical overlap. E.g: on the left most
you can see the parent category as Food and there are many child
categories inside this like : soft drink, candy, Dietary supplement
etc. And similarly we have a parent category Medication and Hy-
giene and various other child categories inside it.

Decoupling the categories into parent and child sections will
help the models to perform better as the child models will now
only concentrate on the subset categories rather than worrying
about other miscellaneous categories. In section 5 we explain the
architectures we leveraged for the parent and child models.

5 MODEL ARCHITECTURAL OVERVIEW
In the above section we explained the 2 stage process in order to
predict the final product category. In this work, we explore similar
architectural designs for both the parent and child models. The
discussions in this sections are thus common for both the parent
and child models.

5.1 Vision only model
Deep convolutional networks have established themselves as the
state of the art on many tasks like Object detection, recognition /
classification, segmentation etc. There exist wide range of novel
visual architectures which can be leveraged for image classifica-
tion tasks as well. Deep features extracted by pre-trained or fine
tuned deep CNNs constitute a strong baseline for image classifica-
tion tasks [13]. Considering how diverse various product images
present on e-commerce sites are, we planned to fine-tune CNNs
pretrained on ImageNet in order to extract visual features on our

https://www.cdtfa.ca.gov/formspubs/pub31.pdf
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Category List
1. Exempt Food, Food Ingredients & Beverages 2. Taxable Food, Food Ingredients & Beverages
3. Soft drinks 4. Candy
5. Dietary Supplements 6. Bundles
7. Exempt Clothing 8. Taxable Clothing and Accessories
9. Taxable Digital products 10. Exempt Digital products
11. Taxable TPP 12. Nontaxable TPP
13. OTC Drugs & Medicines 14. Feminine Hygiene Products
15. Cosmetics, Grooming & Hygiene Products 16. Durable Medical Equipment
17. Prosthetic Devices 18. Mobility Enhancing Equipments
19. Exempt Medical Supplies 20. Taxable Medical Supplies
21. Pet Products 22. Protection Plans(Warranties)/ Maintenance Con-

tracts
23. Taxable Services 24. Exempt Services
25. Coins/ Bullions 26. Gift Cards

Table 2: List of categories a product is classified into before predicting the final taxability

Figure 2: Tax Audit Machine Learning Work Flow

images. We wanted the networks to learn both low and high level
features efficiently and due to this the depth of the network was
pretty important to us. Scaling the depth of the neural network
corresponds to adding more layers to the original network. Mostly
this type of scaling has helped achieve better performance in stan-
dard datasets. However in the conventional scaling techniques,
scaling was done in random fashion and required a lot of human
intervention and expertise and often the corresponding increase
in performance was not significant. Considering various vision
deep convnets we decided to use 1. ResNets: These networks were
mainly designed to mitigate gradient loss in very deep architectures
[6]. The identity mapping helps learns residual mappings instead of
learning the entire function map. The input (X) is passed through a
two-layer path (approximating F(X)) and a skip connection path.
The outputs of the two paths are summed at the output of the
ResNet. 2. EfficientNet: The EfficientNet architecture proposes
scaling using compound coefficient, a simple, efficient technique
[22]. This technique scales the dimensions of depth, width and reso-
lution in a uniform manner using scaling coefficients. The balanced
scaling improves overall performance rather than just increasing

accuracy. The compound scaling balances the scaling dimensions
using a constant ratio. The intuition for the networks is, if the input
image is bigger, then the network needs more layers to increase
the receptive field and more channels to capture more fine-grained
patterns on the bigger image.

5.2 Language only model
Since our use case focuses on product category classification, we
can leverage various means of textual data present on the product
title, product description, feature bullets and OCR extracted data
on the product images. In order to extract the OCR data on images
we used the DetectDocument API of the AWS Textract’s OCR en-
gine [1]. Recent literature in NLP suggests that pretrained word
embeddings offer a strong baseline which surpasses traditional shal-
low learning approaches. The only prior these word embeddings
assumes is a good tokenisation of words, i.e. most embeddings
remove noisy and meaning less data, ignore punctuation and do
not deal with out-of-vocabulary (OOV) words or are mapped to
closest in-vocabulary word based on the Levenshtein distance. For
this problem, we have selected BERT [2] and MPNET [17](since



DeepMMATE: Deep learning based MultiModal architecture for Audit Taxability classification with XAI ISIR-eCom 2024 @ WSDM-2024, March 8, 2024, Mérida, Mexico

Figure 3: Parent - Child Categorization

MPNET overcomes some of the problem prevalent in the classical
BERT pre-trained model) . 1. BERT: BERT, short for Bidirectional
Encoder Representations and Transformers is used as a pre-trained
sentence encoder. BERT adopts masked language model (MLM)
enabling biredirectional learning from text by masking a word in
a sentence and forcing it to use the words on the either side of
the covered word to predict the masked word. 2.MPNet: MPNet
adopts a novel pre-training method, named masked and permuted
language modeling, to inherit the advantages of masked language
modeling and permuted language modeling for natural language
understanding.We leverage the above 2 architectures by fine tuning
them by adding one additional layer on top to create model for the
category prediction task.

5.3 Multimodal Architecture
Multi-ModalModeling of images and text combines semantic knowl-
edge extracted from text with knowledge of spatial structures ex-
tracted from images. Models of this type learn joint representations
of images and text. These joint representations have been used to re-
late images and text to improve search-and-retrieval, classification,
and self-supervised learning. In sections 5.1 & 5.2, we explained
various off the shelf models we used as a single modalities to pre-
dict the output categories. For the multimodal architecture, once
the text and image features have been extracted we feed them to
a final classification layers. Inorder to carry out this we need to
fuse the incoming feature vectors into one. This could be done in
2 ways: 1. Averaging the feature representations by normalizing
the vector sizes 2. Concatenating the feature representations. The
theoretical down sides of method 1 is that the two incoming feature
vectors have different dimensional meanings, their vector spaces
are different and once clubbed they will loose their individuality as
the averaged out vector might not make any semantic sense. We

observe this in our experiments where the second method men-
tioned above performed better than the first. Therefore, in section
6, we report the metrics by using the fusion technique mentioned
in method 2 above.

After testing out the singular modality vision and language mod-
els, we trained an end-to-end siamese based multimodal architec-
ture using the vector fusing mechanism discussed above. The mul-
timodal architecture is modular enough to plug and play various
feature extractors mentioned in section 5.2 & 5.1. We tried out the
off the shelf base networks and figure out the impact of such collab-
oration for the tax audit use case. We have seen that the multimodal
architecture completely outperforms the single modality networks
by huge margins reported in section 6. The complete Siamese based
multimodal architecture can be seen in fig 4.

6 EXPERIMENTS
In this section we present quantitative results of the parent and
child models on the following architectures: 1. Multimodel architec-
ture (Vision + Language) 2. Vision Only architecture 3. Language
only architectures reported on the Amazon Review Data [12]. The
values reported in each of these architectural design belong to mod-
els mentioned in section 5, i.e. for the vision only architecture we
report metrics from the best performing model out of ResNet and
EfficientNet(B7 version), for the language only model it is between
BERT and MPNet & for the Multimodal architecture we report the
best performing model from various possible combinations of the
above two[in this case a combination of ResNet-152 and SeqBERT
was best performing multimodal]. Table 3 reports metrics(F1 score
and final accuracy) on the parent level stage. Table 4 reports the av-
eraged out metrics for the child level models across states. We have
seen that the rate of convergence of the multimodal architecture
is close to (1.5-2) times faster as compared to the single modality

https://nijianmo.github.io/amazon/index.html
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Figure 4: Siames based Multimodal Architecture for Audit taxability prediction

models. We can add this comparison table in the final version if
required.

6.1 Parent level model metrics
We can clearly see in table 3 that the Siamese based Multimodal
architecture outperforms the singular modality models.

6.2 Child level model metrics
In the above section 6.1, we have seen that the Multimodal archi-
tectures have performed better than the single modality networks.
We have observed similar performance even at the child level clas-
sification. We therefore, report precision, recall and F1 metrics at
the child level only for the Multimodal architecture[ResNet-152 +
SeqBERT]. From table 4, we see that the accuries for the child level
classes for the parent categories of Food and Medication & hygiene
are a bit on the lower side due to the products belonging to these
child categories are semantically closer which makes it difficult for
the model to differentiate the products inside these categories.

7 EXPLAINABILITY
In actual audits, just outputting the category / Taxability of the
product won’t suffice. We also need to tell the auditors what ingre-
dients/features/words of the product led to this taxability/category
prediction. Hence, inorder to bring in transparency into this tax-
ability process we bring in the concept of XAI(Explainable AI)
which will tell us the reasons why we categorised the product into
a particular category and hence taxability bucket.

In order to show the effectiveness of our explainability wrapper
around the classification model leveraging LIME [14](most effec-
tive of all in this case), we take the following example from an
e-commerce website where the product title was the following -
"Spry Xylitol Peppermint Sugar Free Candy - Breath Mints That

Promote Oral Health, Dry Mouth Mints That Increase Saliva Pro-
duction, Stop Bad Breath.” On passing this product to our siamese
model, the parent class was predicted as Food and the child class
was Candy. Next we run the explainability module to get the key-
words that drive the model towards the decision. Figure 5 & 6, gives
the explainability output at the parent level & child level respec-
tively. In fig. 6 on the left you can see the probability score for
each category. The words on the right of this straight line are the
reason why the model is inclined towards the candy & since Candy
in Texas(state considered in this case) is taxable, we output the
taxability as Yes. The numbers shown Indicate the importance of
the words helping the model to come to the category conclusion in
descending order.

We can see words like peppermint, mints, Xylitol, oral, mouth,
sugar as the reasons that drives the model towards the candy cate-
gory. At the same time on the extreme right, we have words like
health, production etc which drive the model towards Dietary sup-
plements. Similarly, we have other categories where the model
lacks the confidence from the input text to drive itself to these cate-
gories. Here Xylitol is an important Ingredients in candies, it is a
natural sugar alcohol found in plants. The model during its training
phase might have picked up this insight where it saw product titles
containing the word Xylitol were mostly candies & hence, we can
see the word driving the model towards candy. These insights help
the auditors gain more confidence on the models performances and
improves reliability.

8 CONCULUSION
Constant improvements in the Computer Vision and Natual Lan-
guage processing domains have led to better tackling the category
classification problems. The semantic representations of the lan-
guage and visual structures of the product are well captured using
the siamese based model. This work asserts that transfer learning
between these two modalities provides a robust solution to noise &
improving the overall performance accuracy of classification tasks.
We compared the single modality baseline model performances

https://www.amazon.com/dp/B0001VKLDY
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Figure 5: Explainability wrapper output for parent level classification for example product in Texas state

Figure 6: Explainability wrapper output for child level classification for example product in Texas state
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F1 scores of various model architectures - Testing set - Parent Model
Sample Size Multimodal architeture Vision only Language only

Parent Category
Medication & Hygiene 6509 0.89 0.85 0.82
TPPs 1590 0.45 0.34 0.37
Digital Products 1482 0.93 0.92 0.91
Clothing 1342 0.77 0.71 0.73
Misc 1 2225 0.90 0.90 0.81
Food 4273 0.98 0.94 0.98
Services 846 0.58 0.57 0.32
Final Accuracies 18267 0.89 0.83 0.80

Table 3: The above reported values are the best F1 scores belonging to the model combinations mentioned in section 5

Child Model metrics - Testing set
Precision Recall F1-score

Child Categories
Taxable Clothing & Accessories 0.92 0.94 0.93
Exempt Clothing 0.93 0.91 0.92
Taxable Services 0.873 1.00 0.93
Exempt Services 1.00 0.33 0.50
Gift Cards 1.00 1.00 1.00
Coins/ Bullions 0.98 0.97 0.98
Pet Products 0.99 0.98 0.98
Bundles 0.95 0.97 0.96
Protection Plans (Warranties)/ Maintenance
Contracts

1.00 1.00 1.00

Nontaxable TPP 0.95 0.92 0.93
Taxable TPP 0.96 0.97 0.97
Taxable Digital products 0.87 0.96 0.91
Exempt Digital products 0.95 0.85 0.90
OTC Drugs & Medicines 0.86 0.82 0.84
Prosthetic Devices 0.78 0.82 0.80
Taxable Medical Supplies 0.74 0.80 0.77
Durable Medical Equipment 0.74 0.58 0.65
Cosmetics, Grooming & Hygiene Products 0.89 0.94 0.91
Feminine Hygiene Products 0.93 0.98 0.96
Mobility Enhancing Equipments 0.70 0.86 0.77
Exempt Medical Supplies 0.74 0.66 0.70
Dietary Supplements 0.80 0.89 0.85
Candy 0.69 0.88 0.78
Taxable Food, Food Ingredients & Beverages 0.46 0.15 0.22
Exempt Food, Food Ingredients & Beverages 0.67 0.64 0.65
Soft Drinks 0.71 0.92 0.80

Table 4: The above reported values are the best F1 scores belonging to the model combinations mentioned in section 5

where the category classification tasks are performed separately
for each of the vision and language streams with the performance
of the Multimodal siamese based network. The latter incorporates
features from both the vision and language streams. The proposed
Multimodal architecture (ResNet-152 & SeqBERT) outperform the
single modality models giving us an accuracy boost of atleast 5-
6 % both at the parent and child level stages. Additionally, with

our explainability wrapper we reinforce how we can enable wider
adoption of such ML solutions to end customers(auditors in this
case).
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