
CAPS: A Practical Partition Index for Filtered Similarity Search
Gaurav Gupta

gaurav.gupta@rice.edu
Rice University

Houston, TX, USA

Jonah Wonkyu Yi
jonah.w.yi@rice.edu

Rice University
Houston, TX, USA

Benjamin Coleman
benjamin.ray.coleman@gmail.com

Google Deepmind
Mountain View, CA, USA

Vihan Lakshman
vihan.lakshman@gmail.com

ThirdAI Corp.
Houston, TX, USA

Chen Luo
cheluo@amazon.com

Amazon Search
Palo Alto, CA, USA

Anshumali Shrivastava
anshumali@rice.edu

Rice University, ThirdAI Corp
Houston, TX, USA

ABSTRACT
With the surging popularity of approximate near-neighbor search
(ANNS), driven by advances in neural representation learning, the
ability to serve queries accompanied by a set of constraints has be-
come an area of intense interest. While the community has recently
proposed several algorithms for constrained ANNS, almost all of
these methods focus on integration with graph-based indexes, the
predominant class of algorithms achieving state-of-the-art perfor-
mance in latency-recall tradeoffs. In this work, we take a different
approach and focus on developing a constrained ANNS algorithm
via space partitioning as opposed to graphs. To that end, we intro-
duce Constrained Approximate Partitioned Search (CAPS), an index
for ANNS with filters via space partitions that not only retains the
benefits of a partition-based algorithm but also outperforms state-of-
the-art graph-based constrained search techniques in recall-latency
tradeoffs, with only 10% of the index size.

KEYWORDS
Constrained near neighbor, Hybrid Query Processing, Vector Databases
ACM Reference Format:
Gaurav Gupta, Jonah Wonkyu Yi, Benjamin Coleman, Vihan Lakshman,
Chen Luo, and Anshumali Shrivastava. 2018. CAPS: A Practical Partition
Index for Filtered Similarity Search. In Proceedings of 3rd International Work-
shop on Interactive and Scalable Information Retrieval methods for eCom-
merce (ISIR-eCom) 2024 @ WSDM-2024, https://isir-ecom.github.io/ (ISIR-
eCom 2024 @ WSDM-2024). ACM, New York, NY, USA, 11 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
In recent years, the information retrieval community has seen a
surge of interest in performant similarity search over dense feature
representations. Fueled by the breakthrough success of deep neural
networks in mapping raw, unstructured data, such as text and
images, into semantically coherent embeddings, vector databases
now underpin numerous applications in web search [18], product

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISIR-eCom 2024 @ WSDM-2024, March 8, 2024, Mérida, Mexico
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

recommendations [25, 27, 30], social networks [34], video analytics
[39], computational biology [12, 16], and many more.

With the tremendous interest and commercial adoption of simi-
larity search indexes, Filtered Near Neighbor Search, which involves
retrieving near-neighbor vectors subject to a set of filters, has
emerged as an essential feature in many applications. This set-
ting frequently appears in the context of product search, where
shoppers often issue queries coupled with constraints such as “free
shipping" or “under $10." Various graph-based similarity search
algorithms have been adapted to provide constraint satisfaction
functionality. For example, AIRSHIP [40], NHQ [36], and DiskANN
[13, 22] all incorporate the filters into the graph walk subroutine
that forms the core of their respective search algorithms. However,
these approaches all carry limitations (Table 1) that hinder their
practical applicability, such as an inability to support a variable
number of constraints per query or a lack of support for conjunctive
ANDs (e.g. “free shipping AND under $10").

Algorithm Variable Conjunctive Sparse
Constraints ANDs Attributes

NHQ [36] ✗ ✓ ✗

AIRSHIP [40] ✓ ✓ ✗

DiskANN [13] ✓ ✗ ✓
CAPS (ours) ✓ ✓ ✓

Table 1: Summary of capabilities of open-source FilteredNear
Neighbor Search algorithms.

While these aforementioned prior works in Filtered Near Neigh-
bor Search focus on integrating with popular graph-traversal al-
gorithms, many industry-scale similarity search databases still use
space partition-based approaches due to their unique advantages
[14, 17]. For example, graph-based ANNS algorithms can incur fre-
quent cache misses due to random node access [8] and cannot easily
be parallelized [28]. Conversely, partition-based algorithms are triv-
ial to parallelize and have a cache and accelerator-friendly data
access pattern. To our knowledge, however, there is currently no ef-
ficient algorithm or structure for constrained search over partitions
short of filtered brute force.

Motivated by these challenges, we propose CAPS (Constrained
Approximate Partitioned Search), a new filtered search algorithm
based on a hierarchical partitioning that guarantees that the re-
turned set of vectors matches all constraints while demonstrating
improved efficiency in the high-recall regime.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

ISIR-eCom 2024 @ WSDM-2024, March 8, 2024, Mérida, Mexico Gaurav Gupta, Jonah Wonkyu Yi, Benjamin Coleman, Vihan Lakshman, Chen Luo, and Anshumali Shrivastava

1.1 Contributions
We begin with an exploratory experiment on the nature of filtered
near-neighbor search. Additionally, we develop methods to address
uncorrelated attributes and conjunctive predicates (i.e. AND con-
straints). We make the following specific contributions.

Constrained Space Partitioning:To our knowledge, we present
the first non-trivial approximate algorithm for filtered near neigh-
bor search via space partitions. One of the key problems with
filtered search in a partitioned index is that most indexes have
large partitions that may only sparsely satisfy the constraint. To
address this, we introduce a Huffman tree-inspired hierarchical
sub-partitioning algorithm that shards the data based on vector
embeddings followed by attributes, which we call an Attribute Fre-
quency Tree (AFT). We also experiment with a learned strategy for
jointly partitioning the embedding and attributes, which achieves
superior results on certain benchmarks.

Practical Utility: We present, to our knowledge, the first ef-
ficient and practically useful constrained search algorithm that
supports a varying number of attributes per query, conjunctive
ANDs and support for rare attributes. Our proposed index also uses
a fraction of the space compared to previously proposed graph-
based filtered search algorithms.

Real-world Evaluation: Prior work in this area relies on syn-
thetic tasks constructed from standard near-neighbor benchmarks
with varying distributional assumptions on the attributes (e.g. clus-
tered or random). We apply our methods to a large-scale industrial
e-commerce application and find that real-world constraints are
power-law distributed. We use the power law structure to enhance
our sub-partition tree algorithm and further improve performance.

Table 2: Notation Used in the Paper

Symbol Description Symbol Description

𝐷 Dataset 𝑥 data point vector
𝐿 number of attributes 𝑞 query
𝐶 (.) constraint function 𝑁 Number of points
𝑎 data point attributes 𝑏 query attribute
𝑓 (.) assignment function 𝐵 number of partitions
𝑃 Partition 𝑝 sub-partition
ℎ Huffman tree height 𝐴(.) sub-partition attribute
𝑚 num cluster to probe

2 FILTERED NEAR NEIGHBOR SEARCH
Modern search applications require simultaneous similarity search
of vector embedding data and filtering by categorical attributes. We
call this framework filtered near neighbor search because it com-
bines ideas from similarity search with more traditional relational
database operations.
Attribute Model: We adopt the industry standard attribute model,
where an attribute is a tag for an item that can take multiple cat-
egorical values. An item can have any number of attributes, each
with one value of an attribute. We begin with a formal definition of
Query Filter and Filtered Search.

Definition 1. Query Filter
A query filter is a function 𝐶 : N𝐿 × N𝐿 → {True, False} such that,

given a data attribute vector 𝑎 ∈ N𝐿 and a query attribute vector
𝑏 ∈ N𝐿 , 𝐶 (𝑎, 𝑏) = True if 𝑎[𝑖] = 𝑏 [𝑖] ∀𝑖 and False otherwise.

The near-neighbor search problem has many theoretical for-
mulations, leading to slightly different problem statements. For
example, the (𝑅, 𝑐)-approximate near neighbor problem asks that
we retrieve all points within radius 𝑅 of the query and none other
([9, 19]). The 𝑘-nearest neighbor problem [7] is to identify all of
the 𝑘 closest points to a query with high probability. We state the
constrained problem in a way that is agnostic to the specific choice
of the near-neighbor formulation.

Definition 2. Filtered Near-Neighbor Search
Given a dataset 𝐷 = {(𝑥1, 𝑎1), . . . (𝑥𝑁 , 𝑎𝑁)} of embedding vectors
𝑥𝑖 ∈ R𝑑 and associated attributes𝑎𝑖 ∈ N𝐿 , a query𝑞 and a query filter
𝐶 (𝑞,𝑏), solve the near neighbor problem of interest on the restricted
dataset 𝐷𝐶 = {(𝑥𝑖 , 𝑎𝑖) ∈ 𝐷 : 𝐶 (𝑏, 𝑎𝑖)}.

Definition 1 defines the query filter constraint, and Definition 2
defines the constrained similarity search problem as a filtered ver-
sion of the standard similarity search. This is well-motivated by
industrial applications, where practitioners often wish to perform
a query with the SQL-style predicate “WHERE 𝑑𝑖𝑠𝑡 (𝑥, 𝑞) < 𝑅 AND
𝑥 ∈ 𝐷𝐶 .”

3 CHALLENGES OF FILTERED SEARCH
In this section, we seek to understand the conditions under which
existing constrained search strategies fail to retrieve results in a
performant manner.

There is a fundamental tension between satisfying the con-
straints and taking the optimal path through the dataset for similar-
ity search. While this could, in principle, be solved by constructing
an index for each possible attribute (or by incorporating the at-
tribute into the vector embedding), such solutions are insufficient
in practice for two reasons.
• Often, the attributes are either unknown or of high cardinality,
precluding algorithms that pre-index the data. In other words,
𝐷𝐶 must be identified dynamically and on a query-dependent
basis.
• Elements that do not satisfy the constraint must often be exam-
ined en-route to the solution. For example, it is not straightfor-
ward to choose between a slightly-further partition with many
items in 𝐷𝐶 and a slightly-closer partition with few valid items.
Ultimately, all constrained search approaches must find a way to

integrate the searching and filtering operations efficiently. Below,
we summarize the two possible approaches (as shown in Figure 1).

Search, then filter: A natural solution is to post-filter the items
that are identified by the similarity search index. This approach
works well when many items in the dataset satisfy the constraint,
because then it is likely that only a few extra results will need to
be returned from the index. However, it is problematic when 𝐷𝐶 is
sparsely populated.

Sparsity is a particularly serious issue in high dimensions, be-
cause valid candidates may be spread over an exponentially large
space (in 𝑑). For graph-based algorithms, this manifests as an ex-
ploration set that grows rapidly due with the fan-out of each node
[29]. For partition-based algorithms, this manifests as low recall
unless a large number of clusters are probed [17].

CAPS: A Practical Partition Index for Filtered Similarity Search ISIR-eCom 2024 @ WSDM-2024, March 8, 2024, Mérida, Mexico

Figure 1: Search engine queries can be typed text, images,
and/or user behavior, transformed into vector embeddings.
Queries also involve implicitly or explicitly selected filters
known as query attributes. Existing methods handle these
hybrid queries through either search-then-filter (where the
ANN model provides a candidate set, which gets filtered by
attribute filter) or filter-then-search (where an attribute index
produces a candidate set which is ranked to top-k using brute
force similarity). We introduce a novel hybrid search index
which provides a single step attribute filter and vector search.

Filter, then search: Another viable approach is to apply an
attribute-based filter followed by a brute force similarity search over
the items that match. This approach has the exact opposite sparsity
impact: highly sparse queries are very easy, because then we need
only explore a few items, but it will be prohibitively expensive if
many items satisfy the constraints.

3.1 The unhappy middle
Extremely sparse constraints can be solved quickly by cascading
an inverted index (or randomized approximation) with a brute-
force search. Extremely dense constraints can be solved quickly by
search-then-filter. Therefore, the only algorithmically interesting
regime is when there are too many items to brute force 𝐷𝐶 but too
few to post-filter a standard similarity search. We call this region
the unhappy middle. Unfortunately, most real-world queries fall into
this regime. To illustrate this problem, we conducted an experiment
using a partition-based search over MNIST [26] with synthetic
attributes. We randomly distribute the attributes i.i.d. throughout

the whole dataset with different probabilities, then query while
constraining on each attribute. We adjust the fraction of elements
that satisfy the constraint (the sparsity) to investigate the effects of
sparsity on search.

Figure 2 shows the effect of sparsity on the number of items
examined (left) and the overall search latency (right). The results
confirm our intuition: highly sparse and highly dense constraints
can be adequately addressed with separate search and filtering.
However, there is a central region (highlighted) where it is ex-
pensive to brute-force the entire set of valid results and equally
expensive to find enough search results for post-filtering 1

Figure 2: Distance calculations (left) and latency (right) for
filtered search on MNIST , subject to recall > 95%. For sparse
attributes, it is optimal to filter first, then search. For dense
attributes, it is sufficient to filter the search output.

We acknowledge that the differentiation between pre-filtering
and post-filtering approaches has been addressed in prior discus-
sions, including the work by Pinecone [5]. However, our contribu-
tion lies in the empirical analysis of the unhappy middle problem,
which, to the best of our knowledge, has not been previously char-
acterized. This analysis highlights the importance of developing
improved algorithms in order to make further advancements in
hybrid query processing.

4 RELATEDWORK
Approximate solutions to the near-neighbor search problem exhibit
tremendous algorithmic diversity. At various times over the last 30
years, locality-sensitive hashing [2, 37], quantization and partition-
ing methods [10, 12, 14, 15, 23], trees [4, 21, 32], and graph-based
methods [20, 28] have each represented state of the art. Out of
this, graphs and partitions have emerged as the two dominant data
structures.

Graphs:Graph-basedmethods have traded positionswith partition-
based methods at the top of the leaderboard for several years [3].
Graph algorithms locate near neighbors by walking the edges of a
graph where each point is (approximately) connected to its 𝑘 near-
est neighbors. This area has focused on improving graph properties
using diversification, pruning, hierarchical structures, and other
heuristics [29]. Recent work in this area has focused on systems
properties of graph implementations [8], dimension reduction and
theoretical analysis [31], and selective, pruned computation [6]. It

1We note that the latency numbers (Figure 2) are somewhat artificial, as we used a
simplified and unoptimized version of our algorithm using Python. Nonetheless, we
believe this offers valuable insight into the nature of constrained search.

ISIR-eCom 2024 @ WSDM-2024, March 8, 2024, Mérida, Mexico Gaurav Gupta, Jonah Wonkyu Yi, Benjamin Coleman, Vihan Lakshman, Chen Luo, and Anshumali Shrivastava

Figure 3: CAPS is adaptable to any near neighbor partitioning approach. Inspired by Huffman coding, each near neighbor
partition is further sub-partitioned based on attribute occurrence frequency (refer to Section 5.1). These sub-partitions are
disjoint and indexed by common attribute values. For a given query 𝑞, we select the closest𝑚 partitions to the vector part of the
query and the corresponding sub-partition further on the Attribute Frequency Tree (AFT). Once the set of𝑚 sub-partitions is
retrieved, CAPS performs a lexicographic search based on attributes and brute force nearest neighbor search based on vectors.

is also common for a graph index to serve as the partition identifi-
cation step of a partitioned index (e.g. Neural LSH [11] and FAISS
with HNSW pre-indexing).

Partitions: A large family of successful similarity search al-
gorithms, such as FAISS-IVF [17], splits the dataset into parti-
tions/clusters. This improves the search latency because the query
does not need to examine all data points but only a few clusters that
are likely to contain neighbors. The search algorithm identifies a
small subset of nearby clusters, typically via a near-neighbor search
on cluster identifiers. This follows the brute force near neighbor
search over the points in clusters.

4.1 Hybrid query search
A variety of hybrid approaches have been proposed recently to
integrate the constraint satisfaction into the search index.

AIRSHIP: AIRSHIP is a constrained near-neighbor algorithm
based on the HNSW near-neighbor graph. Most graph algorithms
employ a variation of beam search to walk through the graph and
identify neighbors. Beginning from a randomly selected set of initial
nodes, beam search maintains a list of “exploration candidates.” The
best candidates (those closest to the query) are retained during the
search as a tentative set of near-neighbors. Once the algorithm has
explored a sufficiently large fraction of the graph and exhausted its
supply of candidates, it returns the best candidates as the neighbors.

DiskANN: Originally introduced in 2019, DiskANN [22] is a
graph-based search index capable of indexing and searching over
billion-scale vector collections with only 64GB of RAM. The au-
thors subsequently built on this work by introducing capabilities
for real-time updates [35] and support for filtered queries [13]. The
key insight behind the filtered DiskANN family of algorithms is
to incorporate knowledge of the attributes into the graph index-
ing stage so that the greedy search can leverage this information.

However, this algorithm only supports the simplified case of a sin-
gle constraint per query. While a single filter suffices to support
disjunctive ORs (via a union of independent searches), the authors
note that supporting conjunctive ANDs would require new ideas.

NHQ: Native Hybrid Query [36] is also a navigable proxim-
ity graph-based constrained near-neighbor search algorithm. It
builds a graph like HNSW, using a fused distance metric given by
𝑑𝑓 (.) = 𝑑𝑣 (.) +𝑤𝑑𝑎 (.), where the distance between any two points
is given by the weighted summation of Euclidean distance between
corresponding vectors and hamming distance between the binary
attribute vector.

AnalyticDB-V: AnalyticDB [38] seeks to provide support for
SQL-style queries over data that consists of both relational tables
and embeddings of unstructured entities. The core insight behind
this work is to develop four query plans and an associated cost
optimizer to efficiently determine how to order the filtering and
search operations. These query plans include brute force search,
product quantization bitmap scans, and graph-based searching.
We do not evaluate this method in our experiments due to a lack
of publicly available code. Still, we note that our contributions
complement AnalyticDB in that CAPS can be viewed as a potential
query plan within this larger database engine.

5 CAPS: INTERLEAVED FILTERING AND
SEARCH

Our proposed method allows for simultaneous filtering and search
within a clustered near-neighbor index. We are looking for an
algorithm that performs equally well in the dense-attribute regime
(the head), the sparse regime (the tail), and the unhappy middle.
To enable constrained search, we modify the clustering portion of
the algorithm and augment the cluster identification process with
constraint checks. The intuition for this direction is as follows.

CAPS: A Practical Partition Index for Filtered Similarity Search ISIR-eCom 2024 @ WSDM-2024, March 8, 2024, Mérida, Mexico

5.1 Intuition
Consider a standard partitioned index, where we identify partitions
likely to contain nearby points. Once a suitable set of partitions
have been found, the neighbors which satisfy the constraints can
be found via brute-force attribute matching followed by the met-
ric distance computation on the positive attribute matches. If we
examine𝑚 different partitions {𝑃1, ...𝑃𝑚}, then we will require a
total of

∑𝑚
𝑏𝑖𝑛=1 |𝑃𝑏𝑖𝑛 | brute-force attribute matches and distance

computations.
We can apply filtering within the partition to reduce this com-

putational burden, but this still requires passing every point in
the partition through the filter. CAPS breaks this limitation by
sub-partitioning each cluster (at indexing time) based only on the
attributes. By layering a similarity search index with an attribute
index, we effectively perform a filter-then-search step after doing a
preliminary search-then-filter over the centroids.

Our sub-partition construction algorithm is motivated by two
observations. First, the sub-partitions should be non-overlapping.
Second, we should refuse to search a sub-partition if none of its
contents satisfy the constraint.2 The first observation manifests as
a constraint in the sub-partitioning algorithm: for each cluster 𝑃𝑏𝑖𝑛 ,
𝑃𝑏𝑖𝑛 =

⋃ℎ+1
𝑗=1 𝑝𝑏𝑖𝑛,𝑗 and 𝑝𝑏𝑖𝑛,𝑗 ∩ 𝑝𝑏𝑖𝑛,𝑖 = ∅ for 𝑗 ≠ 𝑖 . In other words,

each cluster has ℎ + 1 disjoint sub-partitions.
Our second observation means one can check all sub-partitions

for query filter match. Instead, we can quickly identify relevant
sub-partitions in 𝑂 (1) time. This can be done if we cluster points
with one common attribute value into the same sub-partitions so
that only a few sub-partitions are likely to be valid. This is achieved
by organizing the points using a frequency-based partitioning over
the attributes. We explain this partitioning scheme in the follow-
ing section and in Figure 3. This reduces the query complexity
to

∑𝑚
𝑏𝑖𝑛=1

∑ℎ+1
𝑗=1 𝐶 (𝑏, 𝑝, 𝑏𝑖𝑛, 𝑗) |𝑝𝑏𝑖𝑛,𝑗 |, where 𝐶 (𝑏, 𝑝, 𝑏𝑖𝑛, 𝑗) = I(𝑏 =

𝐴(𝑝𝑏𝑖𝑛,𝑗)), which checks whether the sub-partition contains the
query attribute 𝑏.

However, it is also possible to integrate the attributes into the
partitioning. This can improve performance if we have reason to
suspect that the attributes correlate or cluster with the embeddings.
While certain algorithms, such as NHQ, explicitly fuse the attribute
and vector similarity measures into a single distance metric, this is
highly dataset-dependent and is difficult to tune. This is especially
problematic in production settings, where some – but not all –
attributes are correlated with embeddings.

5.2 Index creation
At index time, we perform two-level partitioning of the data 𝐷 . The
first level is done by applying any existing partitioning method on
the embedding vectors. Balanced Kmeans clustering from FAISS-
IVF [17] is a common choice in partitioned indices. This partitioning
does not require access to the attribute information, but instead
clusters the dense vectors using a similarity measure such as the
Euclidean distance, Cosine distance, or Inner-product.

Recent work on learned partitioning provides a nice avenue to
integrate attributes into the first-level clustering. For example, the
BLISS method [15] uses an iterative learning scheme to learn the

2Equivalently, if any point in a sub-partition is valid, we should search the sub-partition.

Algorithm 1 CAPS Index construction

Input: Partitioning Model 𝑓 (.), dataset 𝐷 = (𝑥𝑖 , 𝑎𝑖)
Learn partitioning Model 𝑓 (.) = L(D)
for 𝑖 ∈ 1..𝑁 do
𝑏𝑖𝑛 = 𝑓 (𝑥𝑖 , 𝑎𝑖), 𝑃𝑏𝑖𝑛 ← (𝑖)

end for
for 𝑏𝑖𝑛 ∈ 1..𝐵 do
𝑆 = 𝜙

for 𝑗 ∈ 1..ℎ do
𝑡 = top-attribute(𝑃𝑏𝑖𝑛 − 𝑆)
𝑝 𝑗 ← (𝑖), 𝑡 ∈ 𝑎𝑖 , 𝑖 ∈ (𝑃𝑏𝑖𝑛 − 𝑆)
𝐴(𝑝 𝑗) = 𝑡 #attribute tag
𝑆 = 𝑆 ∪ 𝑝 𝑗

end for
𝑝ℎ+1 ← (𝑃𝑏 − 𝑆)

end for
Output: Hierarchical partitions 𝑃 , 𝑝

partitions for any binary relevant-vs-non-relevant similarity match
oracle. Therefore, we can use the true filtered near neighbors of a
set of points in the dataset to learn the BLISS partitions. We consider
two different setups. In CAPS-BLISS1, we do not use the attribute or
filtering information, but instead train and index partitions based
only on the vector near neighbors’ labels. In CAPS-BLISS2, we use
the filtered near neighbors labels against the data vectors.

We will use the function 𝑓 (·) to denote the first-level partition
function that assigns a partition to an input point. By applying 𝑓 (·)
to the elements of the dataset, we get the first-level partitions. The
next step is to construct second-level sub-partitions that shard by
attribute. We create these partitions by exploiting the power law
distribution of the attributes, using a hierarchy called an , which
we call an Attribute Frequency Tree (AFT). A given partition 𝑃 is
split with the points satisfying the most frequent attribute value,
and the remaining set is split further with the same strategy. This
creates a tree where each level has two disjoint sub-partitions, with
one having the selected attribute value. In the interest of lower
index memory, we truncate the tree after a fixed number of levels
denoted by the height ℎ. This truncation scheme is particularly
well-suited to attributes that follow a power law distribution. We
refer to Algorithm 1 and Section 6.1 for a detailed analysis of the
tree depth ℎ.

5.3 Query Algorithm
The query algorithm uses the learned partitioning function 𝑓 (·)
and selects the top𝑚 similar partitions, where𝑚 is the number of
partitions to probe. For the search to be efficient, we choose𝑚 ≪ 𝐵.
The query proceeds by selecting sub-partitions within each of the𝑚
partitions, using the truncated AFT. Each level of the tree splits into
a leaf and a sub-tree, where the split is performed by an attribute
that is common to all items in the leaf (an identifier); thus we have
𝑂 (ℎ) identifiers. We hash the positions of the identifiers so that the
process of identifying sub-partitions in each first-level partition has
𝑂 (1) complexity. To get the final candidate set for brute force, we
join all of the valid sub-partitions into a small candidate set that
(mostly) contains valid points. In the setting where we constrain on

ISIR-eCom 2024 @ WSDM-2024, March 8, 2024, Mérida, Mexico Gaurav Gupta, Jonah Wonkyu Yi, Benjamin Coleman, Vihan Lakshman, Chen Luo, and Anshumali Shrivastava

Algorithm 2 CAPS Query

Input: Partitioning Model 𝑓 (.)
dataset 𝐷 = (𝑥𝑖 , 𝑎𝑖)

Input: Query point (𝑞,𝑏) ∈ 𝑄
R(𝑞) = 𝜙
Select top𝑚 partitions
{𝑏𝑖𝑛1, ..𝑏𝑖𝑛𝑚} = 𝑓 (𝑞)
for 𝑏𝑖𝑛 ∈ {𝑏𝑖𝑛1, ..𝑏𝑖𝑛𝑚} do

IF 𝐴(𝑝 𝑗) = 𝑏 for any 𝑗 ∈ 1..ℎ
R(𝑞) = R(𝑞) ∪ 𝑝 𝑗

ELSE
R(𝑞) = R(𝑞) ∪ 𝑝ℎ+1

candidate set for 𝑞 = R(𝑞)
end for
𝑅(𝑞) = Attribute Match(R(𝑞), 𝑞)
Result = topk Vector Match (𝑅(𝑞))
Output: Result

multiple attributes (e.g., an OR constraint), multiple sub-partitions
from each partition are included in the join.

6 EVALUATION
Baselines: We use compare CAPS with the existing SOTA algo-
rithms for hybrid search. This includes NHQ [36], AIRSHIP [40],
Filtered DiskANN’s filtered index (FI) and Stiched Index (SI) [13].
DiskANN is limited to working only with one attribute per query;
hence we evaluate DiskANN with only one attribute per query
(even though multiple attributes are specified). Where possible, we
use the original authors’ implementations.

Experiment setup: We measure the recall of the top 100 fil-
tered neighbors (following definition 1) against the filtered search
index output. The Recall𝐾@𝐾 is the intersection of the top𝐾 items
retrieved from the index with the true top𝐾 items. Indexing per-
formed using 64 threads and we report single-thread query results
(as is standard for kNN experiments [3]).

Attribute structure:We adopted the attribute structure as same
as used in NHQ [36]. We see the similar structure of attributes on re-
tail websites. For example, an item/query can take one value for each
attribute of Color(Black, Red, Khaki, Yellow, White), Price(under
$50, $70, $100) and Size (S, M, L, XL).

Datasets:We use six publicly available real-world near-neighbor
datasets SIFT, Glove-100, GIST, Crawl, Audio, and Msong (more
details in Appendix Table 4). Because the community currently lacks
any open constrained search benchmark datasets, we randomly
generate attributes for each dataset with 𝐿 = 3 following the same
procedure as [36]. Each attribute can have multiple categorical
values and is distributed with exponential distribution motivated
by a real-world scenario in Figure 6.

Groundtruth: For the ground truth top𝐾 constrained near
neighbors, we perform a (slow) exact search over the set of valid
points for each query, i.e., the ground truth search results match
the query attributes exactly and are the near neighbors in 𝐷𝐶 (see
Definition 1).

Metric: The metric in use is defined by

𝑅𝑒𝑐𝑎𝑙𝑙𝐾@𝐾 =
|Index-top𝐾 ∩ True-top𝐾 |

𝐾
(1)

Here the𝐾 is the number of generated outputs and the ground-truth
true constrained near neighbors.

Hardware: We use a Ubuntu 20.04 machine equipped with 2
AMD EPYC 7742 64-core processors and 1.48TB of RAM. All experi-
ments are performed in RAM. CAPS is written in C++ and compiled
using the GNU Compiler. Refer to the anonymous GitHub link3 for
the code.

Discussion: Figure 4 compares CAPSwith FAISSkmeans, BLISS1
and BLISS2 with baselines on Recall100@100 against QPS. AIRSHIP
suffers from the sparsity of the constraints highly for all datasets
apart from SIFT. DiskANN achieves high recall but it has slower
latency on a single thread. NHQ is competitive, but CAPS excels
mostly in the high recall region. We also note that NHQ contains
an attribute-embedding fusion hyperparameter that is challenging
to tune well. Table 3 presents the overhead added by the indexing
structure (e.g., graph or hierarchical partition). We achieve a very
low index size with 10x smaller overhead than the next-cheapest
baseline (NHQ). Please refer to the supplementary section for the
dataset and code details.

6.1 Ablation Study
Attribute frequency tree height (ℎ):Weevaluate CAPS-FAISSKmeans
with a varying number of subpartitions (ℎ + 1), which are formed at
each level of the truncated attribute frequency tree. These subparti-
tions are non-overlapping groups that can be easily identified using
a specific attribute. Consequently, retrieving a single subpartition
from each partition can be done in constant time during a query.
As the size of the subpartitions becomes smaller, the computational
burden associated with brute force query filtering reduces, in effect
reducing the query latency (Figure 5).

Varying number of attributes (𝐿):We also vary the number
of attributes 𝐿 involved with the query. In other words, any missing
attribute in the query might lead to probing more than one sub-
partition from a partition. Figure 5 (1-2) shows an absence fraction
representing the probability of an attribute value missing from the
query. Our base set of experiments (Figure 4) represents absence
0. On the other side, absence 1 will denote only vector-based near-
neighbor search.

Retail system applicability: To evaluate CAPS on search in
retail systems, we conducted a case study with the Amazon.com
search auto-completion service, which provides customers with
search suggestions given a partially typed query. This service re-
quires a low-latency near-neighbor search algorithm to find the
corresponding candidate queries. In addition, the suggested query
needs to meet certain search constraints, such as preserving the
same product type and brand as the original query.

In this case study, we utilize the production model to generate
the keyword’s embedding [24] and extract possible attributes4. The
frequency distribution of attribute values is presented in figure
6, and the dataset dimensions are 𝑁 = 8M and 𝑑 = 768. It is
3https://anonymous.4open.science/r/constrainedANN-1DDE
4We use a sample of 11 possible binary attributes for this case study

CAPS: A Practical Partition Index for Filtered Similarity Search ISIR-eCom 2024 @ WSDM-2024, March 8, 2024, Mérida, Mexico

Figure 4: Recall100@100 vs Query per second tradeoff on public datasets (top-right is best).

Table 3: Indexing overhead (MB) and Construction time (Sec.) of CAPS and against the baselines.

Data NHQ AIRSHIP DiskANN-FI DiskANN-SI CAPS-FAISSkm CAPS-Bliss

Size Time Size Time Size Time Size Time Size Time Size Time

SIFT 75 26 60 218 357 346.6 320.4 292.2 8.2 69.4 8.8 129
Glove 34 131.8 72 255 254 371.11 142.8 205.5 9.5 86.8 11 177
GIST 43 47.1 90.4 899 295.2 565.5 192.8 848.8 12 150.6 9.7 171
Crawl 67 168 79.4 850 591.4 738.9 284.2 611.1 18 377.7 18 415
Audio 3.3 2.83 3.38 7.1 17.38 32.2 10.38 37.8 0.62 12.6 0.86 8.6
Msong 73 78 90.4 551 397.6 373.3 192.8 360 9.3 118.3 9.1 147

Figure 5: (1-2) The query per second (QPS) increases with an increase in the number of sub-partitions (ℎ+1). For each experiment,
Recall values remain unchanged. (3-4) QPS vs Recall for a variable number of query attributes. A higher absence fraction
implies a fewer number of attributes per query.

evident that the Amazon attribute distribution follows a power-
law distribution pattern with a number of rare constraints. We
compared our method with the existing approximate near-neighbor

search algorithm in production. As shown in table of figure 6, CAPS
outperforms the production algorithm in terms of query time and
recall.

ISIR-eCom 2024 @ WSDM-2024, March 8, 2024, Mérida, Mexico Gaurav Gupta, Jonah Wonkyu Yi, Benjamin Coleman, Vihan Lakshman, Chen Luo, and Anshumali Shrivastava

Methods Query Per Sec
(QPS) (↑) R@100 (↑)

Production 1.0 1.0

CAPS-FAISSkmeans 5.56 1.2

Figure 6: Attribute values distribution for Amazon search
queries.

6.2 Experiment on Larger attribute lengths
Plot 7 shows the QPS vs Recall experiment on the larger attribute
length. We vary attribute length 𝐿 from 1 to 10 and notice that:

• For 1 attribute, NHQ is about 13% better than CAPS
• For 2 attributes, NHQ is about the same as CAPS
• For 3 attributes, CAPS is about 40% better than NHQ
• For 10 attributes, CAPS is significantly better than NHQ
(About 300%)

Additionally, we can understand the sensitivity of CAPS with
𝐿 using theoretical arguments. The query time (as proved in Ap-
pendix, section 9) is function of 𝐿 such that𝑄𝑇 ≤ 𝑂 (𝑎𝑁 𝑙𝑜𝑔 (𝐿+𝛾𝑑) +
𝑏 (𝐿 + 𝛾𝑑)𝑁 −𝑙𝑜𝑔 (𝐿+𝛾𝑑)), where 𝑎 and 𝑏 are terms independent of 𝐿.
This expression has two terms - the first term monotonically in-
creases with 𝐿, but the second term decreases to zero. This suggests
that as 𝐿 increases, the query time will at first decrease (due to hav-
ing a smaller set of NN search candidates) but later increase (due to
a more expensive filtering process). In our set of experiments with
limited values of 𝐿=1,2,3 and 10, we observe the same pattern. This
is attributed to the fact that higher 𝐿 decreases the candidate set
for brute force vector distance computations but it also increases
the latency of attribute distance computation.

We also see that graph based constrained NN search started
performing badly with a higher number of attribute types (with
increasing 𝐿 we see mid-high attribute sparsity).

7 LIMITATIONS AND FUTUREWORK
We realize that, search-then-filter and filter-then-search will be
optimal (compare to CAPS) with very high or very low attribute
sparsity (Figure 2). Additionally, when there are only one or two
attributes, then it is easier to directly incorporate the attributes into
the distance function. In this case, a graph based index (NHQ) will
be better than CAPS. (Figure 7)

Figure 7: Attribute length 𝐿 is 1, 2, 3 and 10 for SIFT 1M
dataset. The Attribute length is the number of attributes
present for each item at indexing time. During the query, the
user selects random attributes with probability 1, 0.3, and
0.03 for L =3,10,100, respectively. This represents the real
search scenario where the user selects only a limited number
of attribute constraints.

In addition to address these limitations, we believe that the fol-
lowing areas are promising as a follow up research in future:
Range constraints: At present, CAPS exclusively manages cate-
gorical attributes. Range attributes, such as product prices, can be
converted into categories through the process of quantizing the
ranges (e.g., grouping prices into categories like $1-$10). When
dealing with multiple ranges, the final outputs of the index can be
combined. This works very well in practical use-case, but achieving
more detailed handling of range constraints may require a special-
ized approach.
Dynamic constraints: Future works can provide an improved
support for updating items with changing attributes over time.
Negation filters: Future works can provide an efficient method of
finding items constrained on absence of an attribute.

8 CONCLUSION
In this work, we present CAPS, a practical algorithm for filtered
approximate near-neighbor search that achieves state-of-the-art
performance in the high-recall regime. While the majority of previ-
ously proposed filtered search algorithms focus on integrating with
graph-based traversal, CAPS provides a novel solution via jointly
partitioning the space of embeddings and attributes. This partition-
ing achieves a smaller space footprint than graph indexes while also
supporting critical practical features such as a variable number of
query attributes and conjunctive constraints. We also find that the
hierarchical partitioning scheme at the core of CAPS is particularly
well-suited for power law-distributed attributes, which we validate
in a case study with the Amazon.com product search engine. These
results demonstrate the effectiveness of space partitioning meth-
ods in the filtered search setting and provide practitioners with an
immediately useful tool for vector search with constraints.

CAPS: A Practical Partition Index for Filtered Similarity Search ISIR-eCom 2024 @ WSDM-2024, March 8, 2024, Mérida, Mexico

REFERENCES
[1] stackexchange, https://stackexchange.com/.
[2] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for ap-

proximate nearest neighbor in high dimensions. Communications of the ACM,
51(1):117–122, 2008.

[3] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. Ann-benchmarks:
A benchmarking tool for approximate nearest neighbor algorithms. Information
Systems, 87:101374, 2020.

[4] Alina Beygelzimer, Sham Kakade, and John Langford. Cover trees for nearest
neighbor. In Proceedings of the 23rd international conference on Machine learning,
pages 97–104, 2006.

[5] James Briggs. The missing where clause in vector search. https://www.pinecone.
io/learn/vector-search-filtering, 2022.

[6] Patrick Chen, Wei-Cheng Chang, Jyun-Yu Jiang, Hsiang-Fu Yu, Inderjit Dhillon,
and Cho-Jui Hsieh. Finger: Fast inference for graph-based approximate nearest
neighbor search. In Proceedings of the ACMWeb Conference 2023, pages 3225–3235,
2023.

[7] Benjamin Coleman, Richard Baraniuk, and Anshumali Shrivastava. Sub-linear
memory sketches for near neighbor search on streaming data. In International
Conference on Machine Learning, pages 2089–2099. PMLR, 2020.

[8] Benjamin Coleman, Santiago Segarra, Alexander J Smola, and Anshumali Shri-
vastava. Graph reordering for cache-efficient near neighbor search. Advances in
Neural Information Processing Systems, 35:38488–38500, 2022.

[9] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions. In Proceedings of the
twentieth annual symposium on Computational geometry, pages 253–262, 2004.

[10] Yihe Dong, Piotr Indyk, Ilya Razenshteyn, and Tal Wagner. Learning space
partitions for nearest neighbor search. arXiv preprint arXiv:1901.08544, 2019.

[11] Yihe Dong, Piotr Indyk, Ilya Razenshteyn, and Tal Wagner. Learning space
partitions for nearest neighbor search. arXiv preprint arXiv:1901.08544, 2019.

[12] Joshua Engels, Benjamin Coleman, and Anshumali Shrivastava. Practical near
neighbor search via group testing. Advances in Neural Information Processing
Systems, 34:9950–9962, 2021.

[13] Siddharth Gollapudi, Neel Karia, Varun Sivashankar, Nikit Begwani, Swapnil Raz,
Yiyong Lin, Yin Zhang, Neelam Mahapatro, Amit Singh, and Harsha Vardhan.
Filtered- diskann: Graph algorithms for approximate nearest neighbor search
with filters. In Proceedings of the ACM Web Conference 2023, pages 3406–3416,
2023.

[14] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern,
and Sanjiv Kumar. Accelerating large-scale inference with anisotropic vector
quantization. In International Conference on Machine Learning, pages 3887–3896.
PMLR, 2020.

[15] Gaurav Gupta, Tharun Medini, Anshumali Shrivastava, and Alexander J Smola.
Bliss: A billion scale index using iterative re-partitioning. In Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages
486–495, 2022.

[16] Gaurav Gupta, Minghao Yan, Benjamin Coleman, Bryce Kille, RA Leo Elworth,
Tharun Medini, Todd Treangen, and Anshumali Shrivastava. Fast processing
and querying of 170tb of genomics data via a repeated and merged bloom filter
(rambo). In Proceedings of the 2021 International Conference on Management of
Data, pages 2226–2234, 2021.

[17] Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang, Philip Pronin,
Janani Padmanabhan, Giuseppe Ottaviano, and Linjun Yang. Embedding-based
retrieval in facebook search. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 2553–2561, 2020.

[18] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck.
Learning deep structured semantic models for web search using clickthrough
data. In Proceedings of the 22nd ACM international conference on Information &
Knowledge Management, pages 2333–2338, 2013.

[19] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing, pages 604–613, 1998.

[20] Masajiro Iwasaki and Daisuke Miyazaki. Optimization of indexing based on
k-nearest neighbor graph for proximity search in high-dimensional data. arXiv
preprint arXiv:1810.07355, 2018.

[21] Mike Izbicki and Christian Shelton. Faster cover trees. In International Conference
on Machine Learning, pages 1162–1170. PMLR, 2015.

[22] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar
Krishnawamy, and Rohan Kadekodi. Diskann: Fast accurate billion-point nearest
neighbor search on a single node. Advances in Neural Information Processing
Systems, 32, 2019.

[23] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for
nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence, 33(1):117–128, 2010.

[24] Haoming Jiang, Tianyu Cao, Zheng Li, Chen Luo, Xianfeng Tang, Qingyu Yin,
Danqing Zhang, Rahul Goutam, and Bing Yin. Short text pre-training with
extended token classification for e-commerce query understanding. arXiv preprint

arXiv:2210.03915, 2022.
[25] Vihan Lakshman, Choon Hui Teo, Xiaowen Chu, Priyanka Nigam, Abhinandan

Patni, Pooja Maknikar, and SVN Vishwanathan. Embracing structure in data for
billion-scale semantic product search. arXiv preprint arXiv:2110.06125, 2021.

[26] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/, 1998.

[27] Sen Li, Fuyu Lv, Taiwei Jin, Guli Lin, Keping Yang, Xiaoyi Zeng, Xiao-Ming
Wu, and Qianli Ma. Embedding-based product retrieval in taobao search. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, pages 3181–3189, 2021.

[28] Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest
neighbor search using hierarchical navigable small world graphs. IEEE transac-
tions on pattern analysis and machine intelligence, 42(4):824–836, 2018.

[29] Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest
neighbor search using hierarchical navigable small world graphs. IEEE transac-
tions on pattern analysis and machine intelligence, 42(4):824–836, 2018.

[30] Priyanka Nigam, Yiwei Song, Vijai Mohan, Vihan Lakshman, Weitian Ding, Ankit
Shingavi, Choon Hui Teo, Hao Gu, and Bing Yin. Semantic product search. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 2876–2885, 2019.

[31] Liudmila Prokhorenkova and Aleksandr Shekhovtsov. Graph-based nearest
neighbor search: From practice to theory. In International Conference on Machine
Learning, pages 7803–7813. PMLR, 2020.

[32] Parikshit Ram and Kaushik Sinha. Revisiting kd-tree for nearest neighbor search.
In Proceedings of the 25th acm sigkdd international conference on knowledge dis-
covery & data mining, pages 1378–1388, 2019.

[33] Rice. sentence-transformers. Rice News, https://huggingface.co/sentence-
transformers/multi-qa-MiniLM-L6-cos-v1, 2020.

[34] Aneesh Sharma, C Seshadhri, and Ashish Goel. When hashes met wedges: A
distributed algorithm for finding high similarity vectors. In Proceedings of the
26th International Conference on World Wide Web, pages 431–440, 2017.

[35] Aditi Singh, Suhas Jayaram Subramanya, Ravishankar Krishnaswamy, and Har-
sha Vardhan Simhadri. Freshdiskann: A fast and accurate graph-based ann index
for streaming similarity search. arXiv preprint arXiv:2105.09613, 2021.

[36] Mengzhao Wang, Lingwei Lv, Xiaoliang Xu, Yuxiang Wang, Qiang Yue, and
Jiongkang Ni. Navigable proximity graph-driven native hybrid queries with
structured and unstructured constraints. arXiv preprint arXiv:2203.13601, 2022.

[37] Yiqiu Wang, Anshumali Shrivastava, Jonathan Wang, and Junghee Ryu. Flash:
Randomized algorithms accelerated over cpu-gpu for ultra-high dimensional
similarity search. arXiv preprint arXiv:1709.01190, 2017.

[38] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li,
and Yuanzhe Cai. Analyticdb-v: a hybrid analytical engine towards query fusion
for structured and unstructured data. Proceedings of the VLDB Endowment,
13(12):3152–3165, 2020.

[39] Michael Wray, Hazel Doughty, and Dima Damen. On semantic similarity in
video retrieval. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3650–3660, 2021.

[40] Weijie Zhao, Shulong Tan, and Ping Li. Constrained approximate similarity
search on proximity graph. arXiv preprint arXiv:2210.14958, 2022.

https://stackexchange.com/
https://www.pinecone.io/learn/vector-search-filtering
https://www.pinecone.io/learn/vector-search-filtering
https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1
https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1

ISIR-eCom 2024 @ WSDM-2024, March 8, 2024, Mérida, Mexico Gaurav Gupta, Jonah Wonkyu Yi, Benjamin Coleman, Vihan Lakshman, Chen Luo, and Anshumali Shrivastava

9 APPENDIX
9.1 Query time complexity
CAPS creates the index with a partition identification function
𝑓 (.), sub-partition lookup, and index files. The query time is the
summation of top𝑚 partition identification time + sub-partition
identification time + brute force filter from the given sub-partition +
brute force distance computation on the constrained satisfied items
from the sub-partition. For the k-means this is

𝑄𝑇 = 𝐵𝑑 + 𝐵 log𝑚 +𝑚𝑂 (1) (2)

+
𝑚∑︁
𝑖=1

ℎ+1∑︁
𝑗=1
(I(𝐴(𝑝) = 𝑏) |𝑝𝑖, 𝑗 |) (𝐿 + 𝑑I(𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑚𝑎𝑡𝑐ℎ)) (3)

The Attribute match is the constrained match on query attribute
𝑏 and the item attributes of 𝑝𝑖, 𝑗 . If the attributes are correlated with
the embedding feature, we will observe the I(𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑚𝑎𝑡𝑐ℎ) be
1 for most of the items in the top partitions match. However, in the
worst case scenario, we can get I(𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑚𝑎𝑡𝑐ℎ) to be uniformly
distributed over all the item embeddings. Assuming this uniform
distribution probability a.k.a sparsity to be 𝛾 , we can write

𝑄𝑇 ≤ 𝐵𝑑 + 𝐵 log𝑚 +𝑚𝑂 (1) +
𝑚∑︁
𝑖=1

ℎ+1∑︁
𝑗=1
(I(𝐴(𝑝) = 𝑏) |𝑝𝑖, 𝑗 |) (𝐿 + 𝑑𝛾)

If the query specifies all the attributes, only one sub-partition
is selected from each partition. Hence assuming a balanced sub-
partitioning, we have

𝑄𝑇 ≤ 𝐵𝑑 + 𝐵 log𝑚 +𝑚𝑂 (1) +
𝑚∑︁
𝑖=1

|𝑃𝑖 |
ℎ + 1 (𝐿 + 𝑑𝛾)

Under an assumption that the number of partitions is polynomial
in 𝑁 , |𝐵 | = 𝑁 𝑡 , where 𝑡 < 1, the sublinear query time is achieved in

𝑄𝑇 ≤ 𝑁 𝑡𝑑 + 𝑁 𝑡 log𝑚 +𝑚 +𝑚𝑁 1−𝑡

ℎ + 1 (𝐿 + 𝑑𝛾) = 𝑄𝑇𝑈𝐵 (4)

The minimum of the query time upper bound is achieved when
𝑑 (𝑄𝑇𝑈𝐵)/𝑑𝑡 = 0

𝑡 =
log𝑁𝜃
2 log𝑁

, Where 𝜃 =
(𝐿 + 𝑑𝛾)𝑚

(ℎ + 1) (𝑑 + log𝑚)
With the given expression of 𝑡 , we have

𝑄𝑇𝑈𝐵 = 𝑁 𝑡 (𝑑 + log𝑚) +𝑚 + 𝑚𝑁

ℎ + 1𝑁
−𝑡 (𝐿 + 𝑑𝛾)

Focusing only on its dependence on 𝐿, we can write

𝑄𝑇𝑈𝐵 ≈ 𝑂 (𝑎𝑁 𝑙𝑜𝑔 (𝐿+𝛾𝑑) + 𝑏 (𝐿 + 𝛾𝑑)𝑁 −𝑙𝑜𝑔 (𝐿+𝛾𝑑)) (5)

where 𝑎 and 𝑏 are terms independent of 𝐿

9.2 Index size
The number of bytes used in RAM from index and data is embedding
model size(4𝐵𝑑) + sub-partition lookup (4𝑁 + 4𝐵(ℎ + 1)) + sub-
partition key (2𝐵(ℎ + 1)𝑟) + data (including attributes + vectors)
(4𝑁𝑑 + 𝑁𝐿𝑟). We use float32 precision for all apart from storing
attributes. The total size is:

𝑆𝑖𝑧𝑒 (𝐼𝑛𝑑𝑒𝑥 +𝑑𝑎𝑡𝑎) = 4𝐵𝑑 +4𝑁 +4𝐵(ℎ+1) +2𝐵(ℎ+1)𝑟 +4𝑁𝑑 +𝑁𝐿𝑟

Figure 8: Comparison on Recall100@100 against QPS for
the Serverfault questions search with tags as attributes. The
CAPS is used with FaissKmeans clustering based partitioning
of the data. The possible number of attributes are 100.

where 𝑟 = log𝐿 mod 8, is the attribute precision. For example, for
a total of 180 attribute values, we only need 𝑟 = 1, i.e. 1 byte for
representation. After simplification, the total size of index and data
needed during the query operation is:

𝑆𝑖𝑧𝑒 (𝐼𝑛𝑑𝑒𝑥 + 𝑑𝑎𝑡𝑎) = 𝐵(4𝑑 + 2(ℎ + 1) (2 + 𝑟)) + 𝑁 (4𝑑 + 1 + 𝑟𝐿)
(6)

9.3 Experiment with real world attribute data
Besides examining near-neighbor data and real retail system data,
we also analyze CAPS on real-world attribute and vector dataset.
To accomplish this, we sample Serverfault questions from Stack Ex-
change [1]. Additionally, we record the corresponding tags. These
tags serve as attributes for each question text. The dataset comprises
832,692 questions, each accompanied by its respective attributes.
As an illustration, a sampled question and its corresponding tag
looks as follows:

Our nightly full (and periodic differential) backups are be-
coming quite large. due mostly to the amount of indexes
on our tables; roughly half the backup size is comprised
of indexes.We’re using the Simple recovery model for our
backups.Is there any way. through using FileGroups or some
other file-partitioning method. to exclude indexes from the
backups?It would be nice if this could be extended to full-text
catalogs. as well.
Tags: sql-server, backup, sql-server-2008, indexes

For consistency with NHQ’s data format, we restrict the total
unique tags to 100 and allocate an attribute membership vector of
size 100 to each text row. Additionally, we represent the question
text using the sentence-transformers’ "multi-qa-mpnet-base-dot-
v1" [33] embedding of size 768. The CAPS index was constructed
with 256 k-means clusters and an attribute tree height of ℎ = 5.

CAPS: A Practical Partition Index for Filtered Similarity Search ISIR-eCom 2024 @ WSDM-2024, March 8, 2024, Mérida, Mexico

Table 4: Datasets

Name Embedding dimension Corpus size Query size Source

SIFT 128 1000000 10000 http://corpus-texmex.irisa.fr/
Glove-100 100 1183514 10000 https://nlp.stanford.edu/projects/glove/
GIST 960 1000000 1000 https://www.cs.cmu.edu/enron/
Crawl 300 1989995 10000 https://commoncrawl.org/
Audio 192 53387 200 https://www.cs.princeton.edu/cass/demos.htm
Msong 420 992272 200 http://www.ifs.tuwien.ac.at/mir/msd/
Serverfault 768 832692 10000 https://serverfault.com/questions/

From Figure 8, we infer that CAPS shows a better Recall100@100
vs QPS trade-off than the strongest competitor NHQ.

9.4 Dataset details
We use six publicly available near-neighbor datasets SIFT, Glove-
100, GIST, Crawl, Audio, and Msong (Table 4) and Amazon internal
dataset. Additionally, we sample 832,692 questions from stack ex-
change for real attribute dataset comparison.

	Abstract
	1 Introduction
	1.1 Contributions

	2 Filtered Near Neighbor Search
	3 Challenges of Filtered Search
	3.1 The unhappy middle

	4 Related Work
	4.1 Hybrid query search

	5 CAPS: Interleaved Filtering and Search
	5.1 Intuition
	5.2 Index creation
	5.3 Query Algorithm

	6 Evaluation
	6.1 Ablation Study
	6.2 Experiment on Larger attribute lengths

	7 Limitations and Future work
	8 Conclusion
	References
	9 Appendix
	9.1 Query time complexity
	9.2 Index size
	9.3 Experiment with real world attribute data
	9.4 Dataset details

