Dual Learning: Bridging Knowledge Between LLM and Recommender System

Pan Li

Assistant Professor, Georgia Institute of Technology ISIR-eCom 2024

Georgia Tech Scheller College of Business

Agenda

•Preliminaries in Dual Learning

•Dual Learning in Cross-Domain Recommendations

•Dual Learning, LLM, and Aspect-Based Recommendations

Motivation: Structural Duality

Definition

Two machine learning tasks are of structural duality if one learning task maps from space X to space Y, and the other learning task maps from space Y to space X.

Credit: (Qin & Xia 2019)

Credit: (Qin & Xia 2019)

Example: Image Processing

Credit: (Qin & Xia 2019)

Structural Duality in AI

•Structural Duality is very common in AI applications

AI Application	X->Y	Y->X			
Machine Translation	Translation from Language EN to CH	Translation from Language CH to EN			
Speech Processing	Speech Recognition	Text-to-Speech			
Image Processing	Image Captioning	Image Generation			
Conversation	Question Answering	Question Generation			
Search Engine	Query-Document Matching	Query/Keyword Suggestion			

How Can We Exploit Structural Duality in AI Applications?

Dual Learning

Bidirectionally transfers information/knowledge/parameters between the primal task and the dual task.

Optimizes simultaneously to achieve optimal performance for both tasksBayes Theorem:

$$P(\mathbf{x},\mathbf{y}) = P(\mathbf{x})P(\mathbf{y}|\mathbf{x};\mathbf{f}) = P(\mathbf{y})P(\mathbf{x}|\mathbf{y};\mathbf{g})$$

Dual Optimization:

objective 1:
$$\min_{\theta_{XY}} \frac{1}{|D|} \sum_{(x,y) \in D} L_1(f(x, \theta_{XY}), y)$$

objective 2: $\min_{\theta_{YX}} \frac{1}{|D|} \sum_{(x,y) \in D} L_2(g(y, \theta_{YX}), x)$

s.t.
$$P(x, y) = P(x)P(y|x; f) = P(y)P(x|y; g), \forall (x, y) \in D$$

Application I: Cross-Domain RecSys

Suppose we know the user preferences in the book domain...

How to estimate the user preferences in the movie domain?

Transfer Learning for CDR

Key Idea: apply dual learning to cross-domain recommendations!

Solution: Dual Learning

Improving recommendation performance in one domain would also lead to improvement in the other domain!

Model [WSDM 2020, TKDE 2021]

Latent Orthogonal Metric Mapping

Learns the bidirectional orthogonal mapping (X, X^T) between user embeddings across different domains.

■ Minimize the Euclidean distance in the latent space

$$L_{o_{A}} = argmin_{X} \sum_{\{W_{ou_{A}}, W_{ou_{B}}\} \in \{ou_{A}, ou_{B}\}} |XW_{ou_{A}} - W_{ou_{B}}|^{2} \quad L_{o_{B}} = argmin_{X} \sum_{\{W_{ou_{A}}, W_{ou_{B}}\} \in \{ou_{A}, ou_{B}\}} |W_{ou_{A}} - X^{T}W_{ou_{B}}|^{2}$$

Orthogonality is important because it

preserves similarities between user embeddings across different latent spaces.

automatically derives the inverse mapping function.

Experiments: Data

Dataset: collected from an online recommendation service for books, movies, music

Contains rich information of user features and item features:

- User (Gender, Age, Movie Taste, Residence, Preference, Usage, Marital Status, Personality)
- Book (Category, Title, Author, Publisher, Language, Country, Price, Date)
- Movie (Genre, Title, Director, Writer, Runtime, Country, Rating, Votes)
- Music (Listener, PlayCount, Artist, Album, Tag, Release, Duration, Title)

Domain	Book	Movie	Music
# of Users	804,825	959,502	45,962
# of Items	182,653	79,866	183,114
# of Ratings	223,007,805	51,269,130	2,536,273
Sparsity	0.0157%	0.0669%	0.0301%

Experiments: Baselines

Baseline Methods:

- **CCCFNet**: Cross-domain Content-boosted Collaborative Filtering neural NETwork (Lian et al. 2017)
- CDFM: Cross Domain Factorization Machine (Loni et al. 2014)
- **CoNet**: Collaborative Cross Network (Hu et al. 2018)
- CMF: Collective Matrix Factorization (Singh & Gordon, 2008)
- NCF: Neural Collaborative Filtering (He et al. 2018)

Conducted record-stratified 5-fold cross validation

Evaluated performance using RMSE, MAE, Precision and Recall metrics

Results: Book/Movie Domains

Algorithm			Book		Movie				
Algorithm	RMSE	MAE	Precision@5	Recall@5	RMSE	MAE	Precision@5	Recall@5	
DDTCDR	0.2213*	0.1708^{*}	0.8595*	0.9594*	0.2213*	0.1714 *	0.8925*	0.9871*	
Improved %	(+3.98%)	(+9.54%)	(+2.77%)	(+6.30%)	(+2.44%)	(+9.80%)	(+2.75%)	(+2.74%)	
NCF	0.2315	0.1887	0.8357	0.8924	0.2276	0.1895	0.8644	0.9589	
CCFNet	0.2639	0.1841	0.8102	0.8872	0.2476	0.1939	0.8545	0.9300	
CDFM	0.2494	0.2165	0.7978	0.8610	0.2289	0.1901	0.8498	0.9312	
CMF	0.2921	0.2478	0.7972	0.8523	0.2738	0.2293	0.8324	0.9012	
CoNet	0.2305	0.1892	0.8328	0.8990	0.2298	0.1903	0.8680	0.9601	

Results: Convergence

Results: Number of Overlap Users

PAN LI@NYU STERN 2020/10/28

Online A/B Test

We conduct an online A/B test at Alibaba-Youku, one of the leading video streaming platforms in China.

Test Period: January 2021User Sample: over 1 million

Applications: TV Shows/Short Videos

■Business Metrics Improvements: +7.07% in total video views

Application II: LLM and Aspects in RecSys

Question 1: How can we better explain the recommended product based on its aspect?

Question 2: How can we provide better recommendations based on user preference over different aspects?

占⁷⁰ 5 Reply

- •LLMs have shown excellent capabilities in common-sense reasoning and utilizing background knowledge in a variety of tasks (e.g., aspect extraction).
- •LLMs transfer the rich world knowledge from the universe of web textual data to better understand users' behavior and preferences.

Prompt Tuning in LLM

Continuous Prompt Tuning: Benefits

•Effectively incorporate User/Item ID information & features into LLM

•Can be easily concatenated with the review text to identify the most important aspect terms

•Can be dynamically updated based on user preference learned from the downstream recommendation task

Predicted Ratings (Loss Equation (3)) Aspect-Based Recommender System **Component 2: Aspect-Based Recommendation** (Update Network & Embedding Table) Attentive Neural Network Layer Concatenation **User Embedding** Aspect Embedding **Item Embedding** Aspect Terms (Loss Equation (1)) Fine-Tuned Language Model (GPT-2) **Component 1: Aspect Term Extraction Encoding Layer** Concatenation (Update Prompt-Tuning) Tokenization **Item Embedding User Embedding** Trainable Parameters/Components Item ID/Feature User ID/Feature **Review Text** Non-trainable Parameters/Components Soft Prompt

Experiments: Data

Datasets: Collected from TripAdvisor (hotel), Amazon (movies), and Yelp (restaurant).

Each Dataset Contains:

- User/Item IDs
- Ratings (Scale 1-5)
- User Reviews,
- Aspect Terms (Ground Truth)

Domain	TripAdvisor	Amazon	Yelp
# of Users	9,765	7,506	27,147
# of Items	6,280	7,360	20,266
# of Ratings	320,023	441,783	1,293,247
Sparsity	0.522%	0.800%	0.235%

Experiments: Baselines

Baseline Methods (Aspect Extraction)
DE-CNN
LCFS
ABAE
BERT
IMN
JASA
Baseline Methods (Aspect RecSys)
A3NCF
SULM
AARM
MMALFM
MTER

Conducted record-stratified 5-fold cross validation

Evaluated performance using RMSE, MAE, Precision and Recall metrics

Aspect-Term Extraction Performance

Dataset		Amazon			Yelp		Tı	ripAdvisor	
Algorithm	Precision@3	Recall@3	F1-Score	Precision@3	Recall@3	F1-Score	Precision@3	Recall@3	F1-Score
Our Model	0.2533*	0.2846*	0.2680*	0.2431*	0.2568*	0.2498*	0.2755*	0.2519*	0.2632*
	(0.0012)	(0.0011)	(0.0011)	(0.0011)	(0.0011)	(0.0011)	(0.0012)	(0.0011)	(0.0011)
(Improvement %)	+2.57%	+5.51%	+3.96%	+2.59%	+2.73%	+2.68%	+0.98%	+0.83%	+0.91%
DE-CNN	0.2468	0.2689	0.2574	0.2368	0.2498	0.2431	0.2723	0.2496	0.2605
LCFS	0.2449	0.2677	0.2558	0.2362	0.2496	0.2427	0.2705	0.2488	0.2592
ABAE	0.2416	0.2650	0.2528	0.2350	0.2491	0.2418	0.2688	0.2471	0.2575
BERT	0.2449	0.2681	0.2560	0.2359	0.2496	0.2426	0.2728	0.2498	0.2608
IMN	0.2430	0.2634	0.2528	0.2347	0.2481	0.2412	0.2715	0.2493	0.2599
JASA	0.2408	0.2634	0.2516	0.2343	0.2481	0.2410	0.2691	0.2487	0.2585
Ablation 1	0.2420	0.2641	0.2526	0.2359	0.2498	0.2427	0.2688	0.2480	0.2580
Ablation 2	0.2485	0.2739	0.2606	0.2381	0.2515	0.2446	0.2726	0.2501	0.2609
Ablation 3	0.2428	0.2667	0.2542	0.2346	0.2498	0.2420	0.2680	0.2468	0.2570
Ablation 4	0.2428	0.2661	0.2539	0.2346	0.2491	0.2416	0.2685	0.2472	0.2574
Ablation 5	0.2496	0.2780	0.2631	0.2393	0.2538	0.2463	0.2736	0.2510	0.2618
Ablation 6	0.2498	0.2786	0.2634	0.2397	0.2541	0.2467	0.2738	0.2510	0.2619

Table 2: Aspect term extraction performance in three datasets. '*' represents statistical significance with confidence level = 0.95. Improvement percentages are computed over the performance of the best baseline model for each metric.

Aspect-Based RecSys Performance

Dataset	Amazon				Yelp			TripAdvisor			
Algorithm	RMSE	MAE	AUC	RMSE	MAE	AUC	RMSE	MAE	AUC		
Our Model	0.2083*	0.1757*	0.7243*	0.2413*	0.2053*	0.6991*	0.1975*	0.1709*	0.7071*		
	(0.0011)	(0.0009)	(0.0017)	(0.0011)	(0.0009)	(0.0016)	(0.0011)	(0.0009)	(0.0017)		
(Improvement %)	+4.08%	+4.89%	+2.91%	+6.80%	+4.43%	+2.59%	+5.62%	+5.38%	+2.39%		
A3NCF	0.2246	0.1895	0.6964	0.2611	0.2176	0.6780	0.2108	0.1814	0.6875		
SULM	0.2478	0.1977	0.6851	0.2825	0.2255	0.6612	0.2199	0.1874	0.6733		
AARM	<u>0.2168</u>	0.1843	0.7032	0.2589	0.2159	0.6799	0.2089	0.1805	0.6898		
MMALFM	0.2305	0.1930	0.6928	0.2596	0.2163	0.6801	0.2120	0.1822	0.6892		
ANR	0.2277	0.1915	0.6958	0.2577	0.2144	0.6810	0.2086	0.1801	0.6902		
MTER	0.2286	0.1903	0.6964	0.2621	0.2163	0.6801	0.2101	0.1827	0.6885		
Ablation 1	0.2250	0.1900	0.6980	0.2568	0.2141	0.6825	0.2081	0.1801	0.6933		
Ablation 2	0.2142	0.1799	0.7197	0.2440	0.2090	0.6962	0.2001	0.1741	0.7045		
Ablation 3	0.2398	0.1942	0.6903	0.2677	0.2189	0.6784	0.2144	0.1886	0.6855		
Ablation 4	0,2375	0.1926	0.6915	0.2661	0.2180	0.6776	0.2140	0.1867	0.6877		
Ablation 5	0.2298	0.1917	0.6966	0.2581	0.2152	0.6801	0.2095	0.1844	0.6898		
Ablation 6	0.2196	0.1820	0.7158	0.2479	0.2117	0.6844	0.2059	0.1770	0.6967		

Table 3: Aspect-based recommendation performance in three datasets. '*' represents statistical significance with confidence level = 0.95. Improvement percentages are computed over the performance of the best baseline model for each metric.

A Few Examples

Original	"It is a great collection version of star wars original episodes			
Review 1	and worth purchasing through amazon if you are a fan."			
Ground Truth	Star Wars, Original, Worth			
Our Model	Star Wars, Original, Worth Purchasing			
DE-CNN	Collection, Star Wars, Episode			
LCFS	Star Wars, Worth, Amazon			
ABAE	Collection, Episode, Worth			
Original	"This movie is still a wonderful adventure			
Review 2	which stands up well to the test of time."			
Ground Truth	Wonderful, Adventure, Test of Time			
Our Model	Wonderful, Adventure, Test of Time			
DE-CNN	Movie, Wonderful, Well			
LCFS	Movie, Wonderful, Adventure			
ABAE	Movie, Wonderful, Time			
Original	"The bathroom looked a little dated			
Review 3	and the water pressure was on the low end."			
Ground Truth	Bathroom, Dated, Low End			
Our Model	Bathroom, Dated, Water Pressure			
DE-CNN	Bathroom, Dated, Low			
LCFS	Bathroom, Little, Water			
ABAE	Bathroom, Little, Dated			

Table 4: Case study of the aspect term extraction task

Thank you!

Pan Li Assistant Professor@ITM, Georgia Tech Email: pan.li@scheller.gatech.edu Website: <u>lpworld.github.io</u>