Dual Learning: Bridging Knowledge Between LLM and Recommender System

Pan Li
Assistant Professor, Georgia Institute of Technology ISIR-eCom 2024

Agenda

-Preliminaries in Dual Learning
-Dual Learning in Cross-Domain Recommendations
-Dual Learning, LLM, and Aspect-Based Recommendations

Motivation: Structural Duality

Definition

Two machine learning tasks are of structural duality if one learning task maps from space X to space Y, and the other learning task maps from space Y to space X.

Example：Machine Translation

English \rightarrow Chinese translation

Welcome to Macao！
欢迎来到澳门！

Example: Speech Processing

Example: Image Processing

Structural Duality in AI

-Structural Duality is very common in AI applications

AI Application	X->Y	Y->X
Machine Translation	Translation from Language EN to CH	Translation from Language CH to EN
Speech Processing	Speech Recognition	Text-to-Speech
Image Processing	Image Captioning	Image Generation
Conversation	Question Answering	Question Generation
Search Engine	Query-Document Matching	Query/Keyword Suggestion

How Can We Exploit Structural Duality in AI Applications?

Dual Learning

\square Bidirectionally transfers information/knowledge/parameters between the primal task and the dual task.
\square Optimizes simultaneously to achieve optimal performance for both tasks
\square Bayes Theorem:

$$
P(\mathrm{x}, \mathrm{y})=P(x) P(\mathrm{y} \mid \mathrm{x} ; \mathrm{f})=P(y) P(x \mid y ; g)
$$

\square Dual Optimization:
objective 1: $\min _{\boldsymbol{\theta}_{X Y}} \frac{1}{|D|} \sum_{(x, y) \in D} L_{1}\left(f\left(x, \theta_{X Y}\right), y\right)$
objective 2: $\min _{\boldsymbol{\theta}_{Y X}} \frac{\mathbf{1}}{|\boldsymbol{D}|} \sum_{(x, y) \in \boldsymbol{D}} \boldsymbol{L}_{\mathbf{2}}\left(\boldsymbol{g}\left(\boldsymbol{y}, \boldsymbol{\theta}_{Y X}\right), \boldsymbol{x}\right)$
s.t. $P(x, y)=P(x) P(y \mid x ; f)=P(y) P(x \mid y ; g), \forall(x, y) \in D$

Application I: Cross-Domain RecSys

Suppose we know the user preferences in the book domain...

How to estimate the user preferences in the movie domain?

Transfer Learning for CDR

Key Idea: apply dual learning to cross-domain recommendations!

Solution: Dual Learning

Model [WSDM 2020, TKDE 2021]

Latent Orthogonal Metric Mapping

\square Learns the bidirectional orthogonal mapping $\left(X, X^{T}\right)$ between user embeddings across different domains.
\square Minimize the Euclidean distance in the latent space

$$
L_{o_{A}}=\operatorname{argmin}_{X} \sum_{\left\{W_{o u_{A}}, W_{\left.o u_{B}\right\}}\right\}\left\{\left\{u_{A}, o u_{B}\right\}\right.}\left|X W_{o u_{A}}-W_{\text {ou }_{B}}\right|^{2} \quad L_{o_{B}}=\operatorname{argmin}_{X} \sum_{\left\{W_{o u_{A}}, W_{o u_{B}}\right\} \in\left\{o u_{A}, o u_{B}\right\}}\left|W_{o u_{A}}-X^{T} W_{o u_{B}}\right|^{2}
$$

Orthogonality is important because it
\square preserves similarities between user embeddings across different latent spaces.
\square automatically derives the inverse mapping function.

Experiments: Data

Dataset: collected from an online recommendation service for books, movies, music
Contains rich information of user features and item features:

- User (Gender, Age, Movie Taste, Residence, Preference, Usage, Marital Status, Personality)
- Book (Category, Title, Author, Publisher, Language, Country, Price, Date)
- Movie (Genre, Title, Director, Writer, Runtime, Country, Rating, Votes)
- Music (Listener, PlayCount, Artist, Album, Tag, Release, Duration, Title)

Domain	Book	Movie	Music
\# of Users	804,825	959,502	45,962
\# of Items	182,653	79,866	183,114
\# of Ratings	$223,007,805$	$51,269,130$	$2,536,273$
Sparsity	0.0157%	0.0669%	0.0301%

Experiments: Baselines

\square Baseline Methods:

- CCCFNet: Cross-domain Content-boosted Collaborative Filtering neural NETwork (Lian et al. 2017)
- CDFM: Cross Domain Factorization Machine (Loni et al. 2014)
- CoNet: Collaborative Cross Network (Hu et al. 2018)
- CMF: Collective Matrix Factorization (Singh \& Gordon, 2008)
- NCF: Neural Collaborative Filtering (He et al. 2018)
\square Conducted record-stratified 5 -fold cross validation
\square Evaluated performance using RMSE, MAE, Precision and Recall metrics

Results: Book/Movie Domains

Algorithm	Book				Movie			
	RMSE	MAE	Precision@5	Recall@5	RMSE	MAE	Precision@5	Recall@5
DDTCDR	0.2213*	0.1708*	0.8595*	0.9594*	0.2213*	0.1714*	0.8925*	0.9871*
Improved \%	(+3.98\%)	(+9.54\%)	(+2.77\%)	(+6.30\%)	(+2.44\%)	(+9.80\%)	(+2.75\%)	(+2.74\%)
NCF	0.2315	0.1887	0.8357	0.8924	0.2276	0.1895	0.8644	0.9589
CCFNet	0.2639	0.1841	0.8102	0.8872	0.2476	0.1939	0.8545	0.9300
CDFM	0.2494	0.2165	0.7978	0.8610	0.2289	0.1901	0.8498	0.9312
CMF	0.2921	0.2478	0.7972	0.8523	0.2738	0.2293	0.8324	0.9012
CoNet	0.2305	0.1892	0.8328	0.8990	0.2298	0.1903	0.8680	0.9601

Results: Convergence

Results: Number of Overlap Users

Online A/B Test

We conduct an online A / B test at Alibaba-Youku, one of the leading video streaming platforms in China.
\square Test Period: January 2021
\square User Sample: over 1 million
\square Applications: TV Shows/Short Videos
\square Business Metrics Improvements: $+7.07 \%$ in total video views

Application II: LLM and Aspects in RecSys

50 Tennis Shots That Defied Science *

SUBSCRIBE to our channel for the best ATP Iennis wideos and tennis highights: htips://www youtube com/ternistv?sub_ Show more

145 comments \equiv sort by
(Li) Add s comment
(9) Ibrendanud 2 weekx opo

I still think that kyrgion 'smash' at 1.39 is one of the most amazing shots in tennis. To in a split second think of a creative shot that has never been done before and execute it fawlesly is just amazing凸 70 \& Repip

Question 1: How can we better explain the recommended product based on its aspect?

Question 2: How can we provide better recommendations based on user preference over different aspects?

Why LLM?

-LLMs have shown excellent capabilities in common-sense reasoning and utilizing background knowledge in a variety of tasks (e.g., aspect extraction).
-LLMs transfer the rich world knowledge from the universe of web textual data to better understand users' behavior and preferences.

Prompt Tuning in LLM

Continuous Prompt Tuning: Benefits

- Effectively incorporate User/Item ID information \& features into LLM
- Can be easily concatenated with the review text to identify the most important aspect terms
-Can be dynamically updated based on user preference learned from the downstream recommendation task

Component 2: Aspect-Based Recommendation (Update Network \& Embedding Table)

Experiments: Data

Datasets: Collected from TripAdvisor (hotel), Amazon (movies), and Yelp (restaurant).
Each Dataset Contains:

- User/Item IDs
- Ratings (Scale 1-5)
- User Reviews,
- Aspect Terms (Ground Truth)

Domain	TripAdvisor	Amazon	Yelp
\# of Users	9,765	7,506	27,147
\# of Items	$\mathbf{6 , 2 8 0}$	7,360	20,266
\# of Ratings	320,023	441,783	$1,293,247$
Sparsity	$\mathbf{0 . 5 2 2 \%}$	0.800%	0.235%

Experiments: Baselines

\square Baseline Methods (Aspect Extraction)

- DE-CNN
- LCFS
- ABAE
- BERT
\circ IMN
- JASA
\square Baseline Methods (Aspect RecSys)
- A3NCF
- SULM
- AARM
- MMALFM
- ANR
- MTER
\square Conducted record-stratified 5-fold cross validation
\square Evaluated performance using RMSE, MAE, Precision and Recall metrics

Aspect-Term Extraction Performance

Dataset	Amazon			Yelp			TripAdvisor		
Algorithm	Precision@3	Recall@3	F1-Score	Precision@3	Recall@3	F1-Score	Precision@3	Recall@3	F1-Score
Our Model		0.2846*		0.2431*	0.2568*	0.2498*	0.2755*	0.2519*	0.2632*
	(0.0012)	(0.0011)	(0.0011)	(0.0011)	(0.0011)	(0.0011)	(0.0012)	(0.0011)	(0.0011)
(Improvement \%)	+2.57\%	+5.51\%	+3.96\%	+2.59\%	+2.73\%	+2.68\%	+0.98\%	+0.83\%	+0.91\%
DE-CNN	$\underline{0.2468}$	0.2689	$\underline{0.2574}$	$\underline{0.2368}$	$\underline{0.2498}$	$\underline{0.2431}$	0.2723	0.2496	0.2605
LCFS	0.2449	0.2677	0.2558	0.2362	0.2496	0.2427	0.2705	0.2488	0.2592
ABAE	0.2416	0.2650	0.2528	0.2350	0.2491	0.2418	0.2688	0.2471	0.2575
BERT	0.2449	0.2681	0.2560	0.2359	0.2496	0.2426	$\underline{0.2728}$	$\underline{0.2498}$	0.2608
IMN	0.2430	0.2634	0.2528	0.2347	0.2481	0.2412	0.2715	0.2493	0.2599
JASA	0.2408	0.2634	0.2516	0.2343	0.2481	0.2410	0.2691	0.2487	0.2585
Ablation 1	0.2420	0.2641	0.2526	0.2359	0.2498	0.2427	0.2688	0.2480	0.2580
Ablation 2	0.2485	0.2739	0.2606	0.2381	0.2515	0.2446	0.2726	0.2501	0.2609
Ablation 3	0.2428	0.2667	0.2542	0.2346	0.2498	0.2420	0.2680	0.2468	0.2570
Ablation 4	0.2428	0.2661	0.2539	0.2346	0.2491	0.2416	0.2685	0.2472	0.2574
Ablation 5	0.2496	0.2780	0.2631	0.2393	0.2538	0.2463	0.2736	0.2510	0.2618
Ablation 6	0.2498	0.2786	0.2634	0.2397	0.2541	0.2467	0.2738	0.2510	0.2619

Table 2: Aspect term extraction performance in three datasets. "*' represents statistical significance with confidence level = 0.95. Improvement percentages are computed over the performance of the best baseline model for each metric.

Aspect-Based RecSys Performance

Dataset	Amazon			Yelp			TripAdvisor		
Algorithm	RMSE	MAE	AUC	RMSE	MAE	AUC	RMSE	MAE	AUC
Our Model	$\mathbf{0 . 2 0 8 3 * *}$	$\mathbf{0 . 1 7 5 7 * ~}^{*}$	$\mathbf{0 . 7 2 4 3 *}^{*}$	$\mathbf{0 . 2 4 1 3 *}^{*}$	$\mathbf{0 . 2 0 5 3}^{*}$	$\mathbf{0 . 6 9 9 1}^{*}$	$\mathbf{0 . 1 9 7 5 ^ { * }}$	$\mathbf{0 . 1 7 0 9 *}^{*}$	$\mathbf{0 . 7 0 7 1}^{*}$
(Improvement \%)	(0.0011)	(0.0009)	(0.0017)	(0.0011)	(0.0009)	(0.0016)	(0.0011)	(0.0009)	(0.0017)
A3NCF	0.2246	0.1895	0.6964	0.2611	0.2176	0.6780	0.2108	0.1814	0.6875
SULM	0.2478	0.1977	0.6851	0.2825	0.2255	0.6612	0.2199	0.1874	0.6733
AARM	$\underline{0.2168}$	$\underline{0.1843}$	$\underline{0.7032}$	0.2589	0.2159	0.6799	0.2089	0.1805	0.6898
MMALFM	0.2305	0.1930	0.6928	0.2596	0.2163	0.6801	0.2120	0.1822	0.6892
ANR	0.2277	0.1915	0.6958	$\underline{0.2577}$	$\underline{0.2144}$	$\underline{0.6810}$	$\underline{0.2086}$	$\underline{0.1801}$	$\underline{0.6902}$
MTER	0.2286	0.1903	0.6964	0.2621	0.2163	0.6801	0.2101	0.1827	0.6885
Ablation 1	0.2250	0.1900	0.6980	0.2568	0.2141	0.6825	0.2081	0.1801	0.6933
Ablation 2	0.2142	0.1799	0.7197	0.2440	0.2090	0.6962	0.2001	0.1741	0.7045
Ablation 3	0.2398	0.1942	0.6903	0.2677	0.2189	0.6784	0.2144	0.1886	0.6855
Ablation 4	0,2375	0.1926	0.6915	0.2661	0.2180	0.6776	0.2140	0.1867	0.6877
Ablation 5	0.2298	0.1917	0.6966	0.2581	0.2152	0.6801	0.2095	0.1844	0.6898
Ablation 6	0.2196	0.1820	0.7158	0.2479	0.2117	0.6844	0.2059	0.1770	0.6967

Table 3: Aspect-based recommendation performance in three datasets. ${ }^{* \prime}$ represents statistical significance with confidence level $=\mathbf{0 . 9 5}$. Improvement percentages are computed over the performance of the best baseline model for each metric.

A Few Examples

Original Review 1	"It is a great collection version of star wars original episodes and worth purchasing through amazon if you are a fan."
Ground Truth	Star Wars, Original, Worth
Our Model	Star Wars, Original, Worth Purchasing DE-CNN LCFS ABAE
Star Wars, Worth, Amazon	
Collection, Episode, Worth	

Table 4: Case study of the aspect term extraction task

Thank you!

Pan Li
Assistant Professor@ITM, Georgia Tech
Email: pan.li@scheller.gatech.edu
Website: lpworld.github.io

