

Captions Are Worth a Thousand Words

Enhancing Product Retrieval with Pretrained Image-to-Text Models

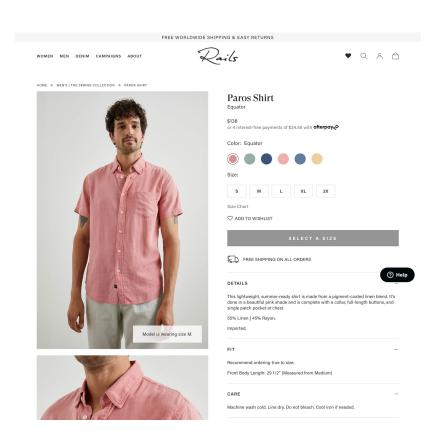
Jason Tang¹, Garrin McGoldrick², Marie Al Ghossein², Ching-Wei Chen²

¹ University of Toronto, ² Crossing Minds

Presented at ISIR-eCom @ WSDM 2024 Mar 8th, 2024, Mérida, Mexico

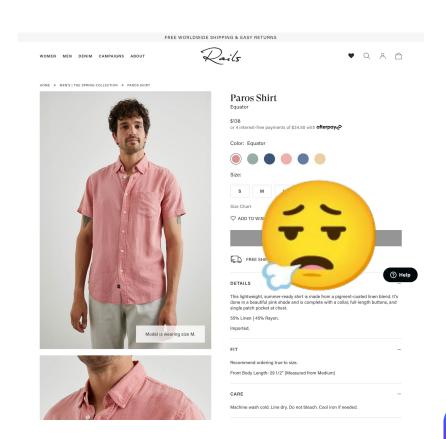
Metadata, Search and Discovery

- Metadata is essential to helping customers find and discover products in a catalog.
- Descriptive product metadata like Name, Color, Size, Description, etc, are heavily used in <u>Search</u> as well as <u>Recommendations</u>.



Metadata, Search and Discovery

- But metadata is <u>costly</u> to manually curate, and many eCommerce sites have varying coverage, quality, and granularity of these tags and descriptors.
- But almost all eCommerce sites will have high quality <u>product</u> <u>images</u>, and paragraph-level <u>product descriptions</u>.



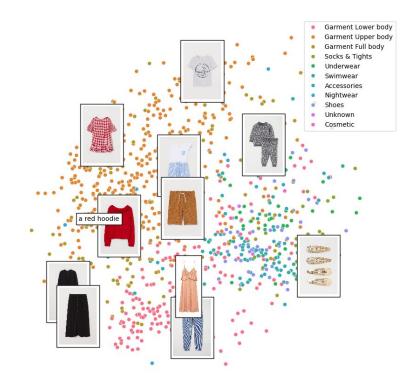
Related Work

CLIP: Image Tagging

- Discriminative image-to-text tagging
- Pre-training task: Predict (image, text)
 pairs that occur across a batch

FashionCLIP

 CLIP fine-tuned on fashion dataset from Farfetch



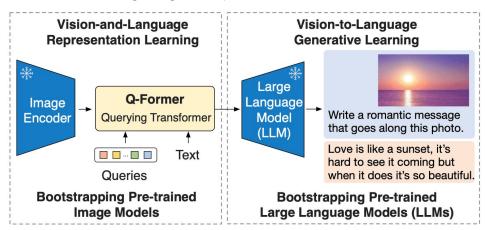
Related Work

BLIP-2: Image captioning

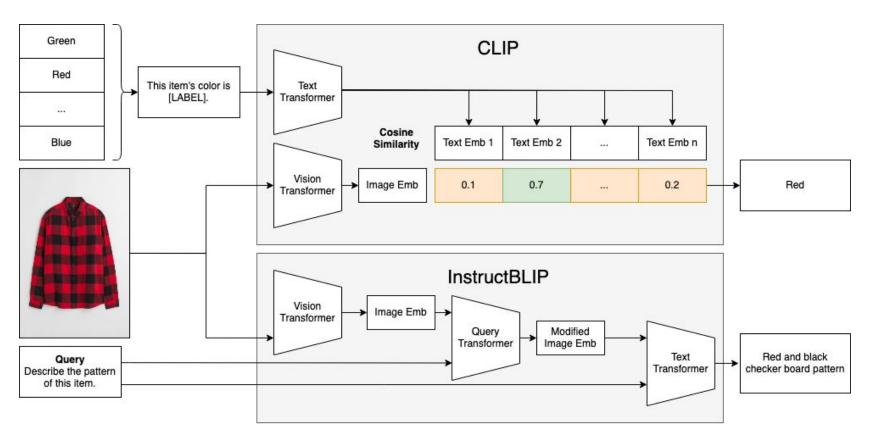
- Generative image-to-text captioning
- Pre-trained jointly with multiple vision-language objectives

InstructBLIP

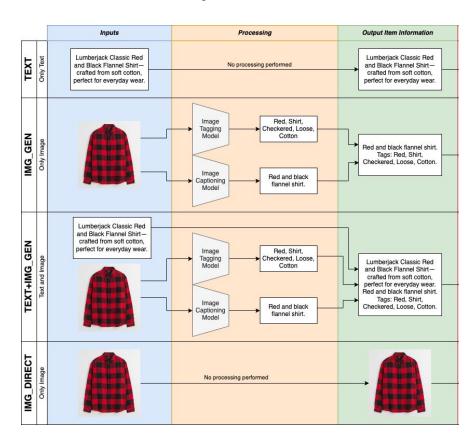
 Instruction tuning format for further pre-training



Proposed Method



Proposed Method



Proposed Method

 Query preprocessing to address misspelled queries and those containing non-English terms

Done with ChatGPT-3.5, e.g.,

"Extract at least 5 related tags or usage keywords from queries. Output in English as a comma separated list."

User Query	Processed Query	
!awnmower tires without rims	lawnmower, tires, without rims	
#20 paper bags	paper bags, without handle,	
without handle	packaging, eco-friendly, retail	
paws	animal, pets, claws, dogs, cats	
apple iphone 11 pro unlocked	apple, iPhone, 11 pro, unlocked	
자전거트레일러	bicycle trailer, bike trailer, cycling trailer, bike cart, bike carrier	
眼镜框	eyeglass frames, glasses frames, eyewear, spectacle frames, glasses	

Evaluation

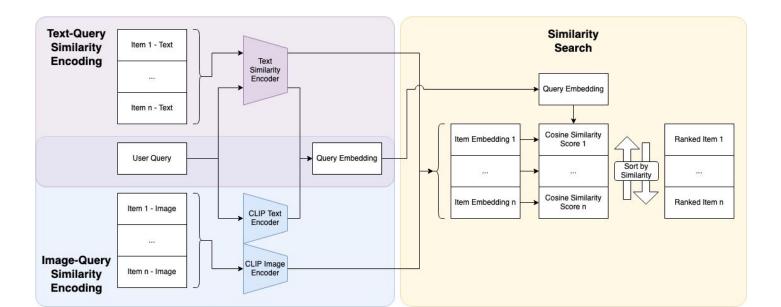
- The <u>Amazon Shopping Queries</u>
 <u>dataset</u> consists of a list of 1.1M
 query-product pairs annotated with
 E/S/C/I (Exact, Substitute,
 Complement, Irrelevant) labels
- Focus on task 1 of the KDD Cup'22:
 Query-Product Ranking and on the English subset of the ESCI dataset
- Use product identifiers to scrape images and select first image to constitute dataset

Dataset sampling

- Filter the dataset and consider products that appear in at least 3 queries (out of the 482k products) for efficiency reasons, given the cost of retrieving images
 - Resulting dataset: 21.6k products, 19.8k queries, 4.3 products per query
- Use padding, consisting in adding random products per query with I label, in order to mitigate the facts that:
 - \circ The datasets mainly contain E and S labels per query,
 - Relevant information (e.g., product dimensions and version) might not be discernible from images

Similarity Search

- Multi-qa-mpnet-base-dot-v1
- ms-marco-MiniLM-L-2-v2

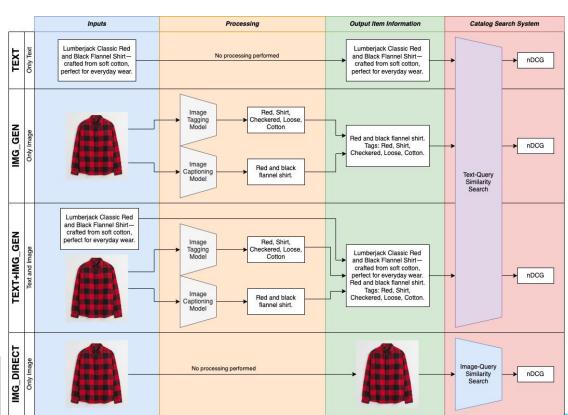


NDCG calculation

Source: A Practical Guide to NDCG

ESCI rating scores from KDD Cup 2022

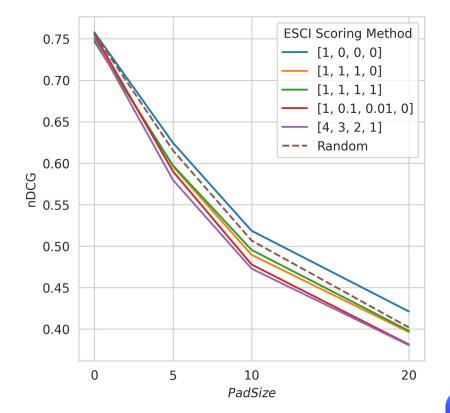
Rating	<u>E</u> xact	<u>S</u> ubstitute	<u>C</u> omplement	<u>I</u> rrelevant
Weight	1.0	0.1	0.01	0.0



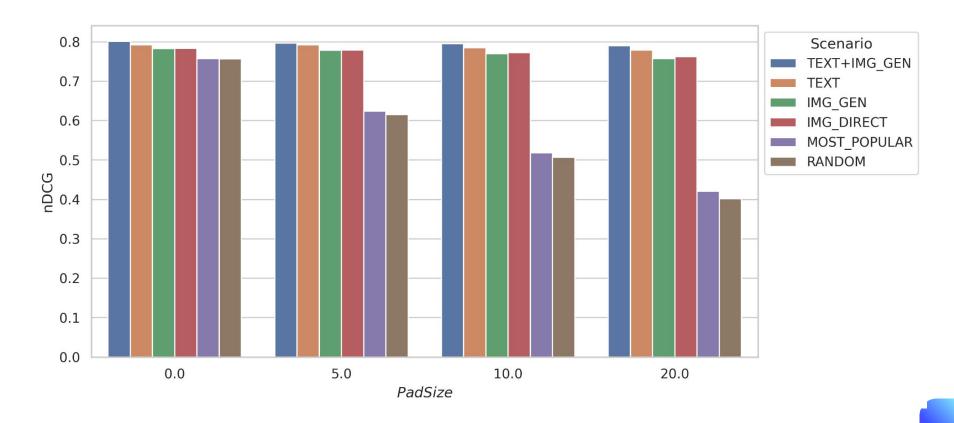
Baselines

- Random
- Most popular,

with popularity computed according to different scores attributed to the [E, S, C, I] labels



Results



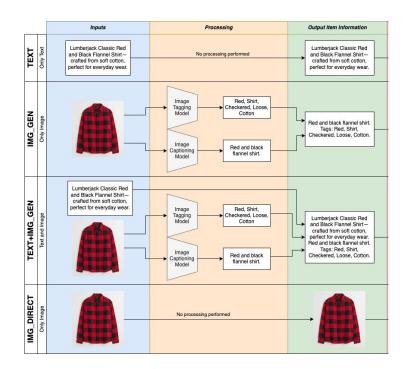
Results

• Query preprocessing showed an increase in performance across the board.

PadSize	Original Query	GPT Preprocessing
0	0.780	0.782
5	0.767	0.774
10	0.756	0.762
20	0.734	0.745

Conclusion

 We demonstrated the ability of multimodal models to generate high-performing image-derived descriptions that enable eCommerce platforms without substantial textual metadata to supplement existing text or images to improve item retrieval performance.



Future Directions

- Explore larger LLMs
- Evaluate against BM25 search engine baseline
- Apply to winning techniques from KDD Cup 2022



Thank You!